Math, asked by NainaMehra, 1 year ago

Find the roots, if they exists, by applying the quadratic formula :-

12abx {}^{2}  - (9a {}^{2}  - 8b {}^{2} )x - 6ab = 0

, where a # 0 and b # 0

Answers

Answered by siddhartharao77
12

Given Equation is 12abx^2 - (9a^2 - 8b^2)x - 6ab = 0

Here, a = 12ab, b = -9a^2 + 8b^2, c = -6ab.

∴ D = b^2 - 4ac

      = (-9a^2 + 8b^2)^2 - 4(12ab)(-6ab)

      = 81a^2 + 64b^2 + 144a^2b^2.


(i)

=>x=\frac{-b+ \sqrt{D}}{2a}

=>\frac{-(-9a^2+8b^2)+\sqrt{81a^2 + 64b^2 + 144a^2b^2}}{2(12ab)}

=>\frac{9a^2-8b^2+\sqrt{(9a + 8b)^2}}{24ab}

=>x=\frac{9a^2-8b^2+9a^2+8b^2}{24ab}

=> x=\frac{18a^2}{24ab}

=>\frac{18a}{24b}

=> \frac{3a}{4b}


(ii)

=>x=\frac{-b-\sqrt{D}}{2a}

=>\frac{-(-9a^2+8b^2)-\sqrt{81a^2+64b^2+144a^2b^2}}{2(12ab)}

=>\frac{9a^2-8b^2-9a^2-8b^2}{24ab}

=>-\frac{16b^2}{24ab}

=>-\frac{2b}{3a}


Therefore, the roots of the equation:

=>x=\boxed{\frac{3a}{4b},- \frac{2b}{3a}}



Hope it helps!

Similar questions