Math, asked by bhuvanmohan2006, 9 months ago

Find the roots of 3x² - 6x +2 = 0
by complete square method.​

Answers

Answered by roshnanda20
0

ANSWER:

Divide above eq with

x^2-2u+2/3=0

Do half of the middle term

x^2-u+2/3=0

adding both side by (2/3)^2

and final anwer is

u=2-√2/3

Answered by wwwvinaysahucom28
0

Answer:

x =  \frac{3 +  \sqrt{3} }{3} or \frac{3 -  \sqrt{3} }{3}

Step-by-step explanation:

3 {x}^{2}  - 6x + 2 = 0

( ({ \sqrt{3}x })^{2}  - 2 \times  \sqrt{3}  \times  \sqrt{3}x  +   ({ \sqrt{3} })^{2}) -  ({ \sqrt{3} })^{2}  + 2 = 0

( { \sqrt{3}x -  \sqrt{3} ) }^{2}  - 3 + 2 = 0

 ({ \sqrt{3}x -  \sqrt{3})  }^{2}  = 1

 \sqrt{3}x -  \sqrt{3}   =   \binom{ + }{ - } 1

 \sqrt{3} x =  \sqrt{3}  + \binom{ + }{ - }1

x =  \frac{ \sqrt{3 }    \binom{ + }{ - } 1 }{ \sqrt{3} }

x =   \frac{ \sqrt{3} + 1 }{ \sqrt{3} }   \times  \frac{ \sqrt{3} }{ \sqrt{3} }  =  \frac{3 +  \sqrt{3} } {3} or \frac{3  -  \sqrt{3}  }{3}

Similar questions