Find the roots of 3x³-x²-10x+6=0
Answers
Answer:
x=−4
3
Orx=
3
2
3
are two roots of given quadratic equation
Explanation:
Given quadratic equation:
√3x²+10x-8√3=0
Splitting the middle term, we get
=> √3x²+12x-2x-8√3=0
Rewriting the terms , we get
=> √3x²+(√3x)(4√3)-2x-2×(4√3)=0
=> √3x(x+4√3)-2(x+4√3)=0
=> (x+4√3)(√3x-2)=0
=> x+4√3=0 Or √3x-2 =0
\begin{gathered}\implies x = -4\sqrt{3} \\\: Or \:x = \frac{2}{\sqrt{3}}\end{gathered}
⟹x=−4
3
Orx=
3
2
\begin{gathered}\implies x = -4\sqrt{3} \\\: Or \:x = \frac{2\times\sqrt{3}}{\sqrt{3}\times\sqrt{3}}\end{gathered}
⟹x=−4
3
Orx=
3
×
3
2×
3
\begin{gathered}\implies x = -4\sqrt{3} \\\: Or\: x = \frac{2\sqrt{3}}{3}\end{gathered}
⟹x=−4
3
Orx=
3
2
3
Therefore,
\begin{gathered} x = -4\sqrt{3} \\\: Or\: x = \frac{2\sqrt{3}}{3}\end{gathered}
x=−4
3
Orx=
3
2
3
are roots of given quadratic equation.
••••
Step-by-step explanation:
3x⁵-10x+6 is the answerrrrrrrrr