Math, asked by geevargheseChia, 1 year ago

Find the roots of 4x2 + 3x + 5 = 0 by the method of completing the square

Answers

Answered by akashnilroy
2
4x2 + 3x + 5 =0
or,  {x} =  (- (-3)  +  \sqrt{ (-3)^{2}  - 4.4.5}) / 2.4 or (- (-3)  -  \sqrt{ (-3)^{2}  - 4.4.5}) / 2.4
or, x = {x} = (3 + \sqrt{ (-71}) / 8  or  (3 - \sqrt{ (-71}) / 8
Answered by silentlover45
2

 Given:-

  •  equation:- {{4x}^{2} + {3x} + {5}}

 To \: \: Find:-

  •  Root \: \: of \: \: the \: \: given \: \: equation \: \: by \: \: completing \: \: the \: \: square \: \: method.

 Solutions:-

  •  {{4x}^{2} + {3x} + {5}}

⇢ {{4x}^{2} + {3x} + {5}}

  •  Divible \: \: both \: \: side \: \: by \: \: 4.

 ⇢ \sf{x}^{2} + \frac{3x}{4} + \frac{5}{4} = \frac{0}{4}

⇢ {x}^{2} + \frac{3x}{4}+ \frac{5}{4} = {0}

  •  Add \: \: {(\frac{3}{8})}^{2} \: \: on \: \: both \: \: side.

⇢ \sf{x}^{2} + \frac{3x}{4} +  \frac{9}{64} =  \frac{-5}{4} +  \frac{9}{64}

⇢ {({x} + \frac{3x}{8})}^{2} =  \frac{-71}{64}

⇢ \sf{x} + \frac{3x}{8} = \frac{\sqrt{-71}}{64}

⇢ \sf{x} + \frac{3x}{8} = \frac{{+-}{\sqrt{71}}}{8}

⇢ {x} = \frac{{+-}{\sqrt{71}}}{8} - \frac{3x}{8}

 x = \frac{\sqrt{71} - {3}}{8} \: \: \: or \: \: \: x = \frac{\sqrt{-71} + {3}}{8}

 So, \: \: the \: \: root \: \: of \: \: the \: \: given \: \: equation \: \: are:-

  •  x = \frac{\sqrt{71} - {3}}{8}

  •  x = \frac{\sqrt{-71} + {3}}{8}

______________________________________

Similar questions