Math, asked by raghav9359, 1 year ago

find the roots of 4x²+3x+5=0 by the method of completing the square​

Answers

Answered by Swarup1998
9

Solution :

The given equation is

4x^{2}+3x+5=0

\to \small{(2x)^{2}+2.2x.\frac{3}{4}+(\frac{3}{4})^{2}+5-(\frac{3}{4})^{2}=0}

\to (2x+\frac{3}{4})^{2}+5-\frac{9}{16}=0

\to (2x+\frac{3}{4})^{2}+\frac{80-9}{16}=0

\to (2x+\frac{3}{4})^{2}+\frac{71}{9}=0

\to \small{(2x+\frac{3}{4})^{2}-(\frac{\sqrt{71}}{3}i)^{2}=0,\:\:i^{2}=-1}

\to \small{(2x+\frac{3}{4}+\frac{\sqrt{71}}{3}i)(2x+\frac{3}{4}-\frac{\sqrt{71}}{3}i)=0}

Either 2x+\frac{3}{4}+\frac{\sqrt{71}}{3}i=0

\to 2x=-\frac{3}{4}-\frac{\sqrt{71}}{3}i

\to x=-\frac{9+4\sqrt{71}i}{24}

Or, 2x+\frac{3}{4}-\frac{\sqrt{71}}{3}i=0

\to 2x=-\frac{3}{4}+\frac{\sqrt{71}}{3}i

\to x=-\frac{9-4\sqrt{71}i}{24}

Thus, the required solution be

    \boxed{x=-\frac{9\pm 4\sqrt{71}i}{24}}

Note : The given equation has no real roots because the value of the discriminant is less than 0.

For the standard quadratic equation ax^{2}+bx+c=0,\:a\neq 0

D=b^{2}-4ac

=3^{2}-4.4.5=9-80=-71<0

{ From the given equation ↑ }

Similar questions