Find the roots of 5^(x+1) + 5^(2-x)=5^3 + 1 by factorization method.....
Answers
Answered by
3
heya,,☺..
5^(x+1)+5^(2-x)=5^3+1
=)5^x*5+5^2*5^2-5^-x=126
=)5x*5+25/5^-x=126
=)let 5^x=y
then, 5y+25/y=126
=)5y^2-126y+25=0
=)5y^2-125-y+25=0
=)5y(y-25)-(y-25)=0
=)(y-25)(5y-1)=0
y=25 and y=1/5
so, 5^x=25
5^x=5^2. ( 5 is cancelled,)
x=2 or again,
y=1/5
so,5^x=5^-1
x=-1..
hence the root is 2 and -1 ..
hope it help you..
..
@rajukumar☺☺
5^(x+1)+5^(2-x)=5^3+1
=)5^x*5+5^2*5^2-5^-x=126
=)5x*5+25/5^-x=126
=)let 5^x=y
then, 5y+25/y=126
=)5y^2-126y+25=0
=)5y^2-125-y+25=0
=)5y(y-25)-(y-25)=0
=)(y-25)(5y-1)=0
y=25 and y=1/5
so, 5^x=25
5^x=5^2. ( 5 is cancelled,)
x=2 or again,
y=1/5
so,5^x=5^-1
x=-1..
hence the root is 2 and -1 ..
hope it help you..
..
@rajukumar☺☺
Similar questions