Math, asked by mohithrongali3, 10 months ago

Find the roots of 5x2 – 7x – 6 = 0 by the method of completing the square

Answers

Answered by ItzAditt007
9

AmswEr:-

Given:-

A quadratic equation,

\tt\longrightarrow5 {x}^{2}  - 7x -6 = 0.

To Find:-

  • The roots of the given equation by completing square method.

ID Used:-

\tt\longrightarrow {a}^{2}  - 2ab +  {b}^{2}  = (a - b) {}^{2} .

Now, lets find out the roots:-

\tt\mapsto5 {x}^{2}  - 7x - 6 = 0. \\  \\ \tt\mapsto5 {x}^{2}  - 7x = 0 + 6. \\  \\ \tt\mapsto5 {x}^{2}  - 7x = 6. \\  \\ \tt\mapsto  \dfrac{5 {x}^{2} - 7x = 6 }{5} . \\  \\ \rm(dividing \:  \: whole \:  \: eq \:  \: by \:  \: 5). \\  \\ \tt\mapsto \dfrac{\cancel5 {x}^{2} }{\cancel5}  -  \dfrac{7x}{5}  =  \dfrac{6}{5} . \\  \\ \tt\mapsto {x}^{2}  -  \dfrac{7x}{5}  =  \dfrac{6}{5} . \\  \\ \tt\mapsto(x) {}^{2}  - 2 \times x \times   \dfrac{7}{10}    + ( \dfrac{7}{10} ) {}^{2}  =  \dfrac{6}{5}  + ( \dfrac{7}{10} ) {}^{2} . \\  \\ \tt\mapsto(x -  \dfrac{7}{10} ) {}^{2} =  \dfrac{6}{5}  +  \dfrac{49}{100} . \\  \\  \tt\mapsto(x -  \dfrac{7}{10} ) {}^{2}  =  \dfrac{120 + 49}{100}.  \\  \\ \tt\mapsto(x -  \frac{7}{10} ) {}^{2}  =  \frac{169}{100} . \\  \\ \tt\mapsto(x -  \frac{7}{10}) {}^{2}   =   \frac{ + }{} ( \dfrac{13}{10} ) {}^{2}. \\  \\  \tt\mapsto x -  \frac{7}{10}  =   \frac{ + }{} \:  \:  \frac{ 13 }{10}.  \\  \\ \tt\mapsto x =  \frac{ + }{}  \:  \:  \frac{13}{10}  +  \frac{7}{10} . \\  \\ \tt\mapsto x =  \frac{7 + 13}{10} \:  \: or \:  \: x =  \frac{7 -  13}{10}  .\\ \\ \tt\mapsto x = \dfrac{\cancel{20}}{\cancel{10}}\:\: Or \:\: x = -\dfrac{\cancel{6}}{\cancel{10}}\\ \\ \mapsto\boxed{\underline{\underline{ \tt x = 2\:\:Or\:\: x=- \frac{3}{5}.}}}

\rm\therefore \:The\:\:req\:\:values\:\:x\:\:are\\ \\ \rm 2\:\:Or\:\: -\dfrac{3}{5}.

Answered by saikrishna1021
3

Answer:here is your our answer

Step-by-step explanation:

Brainliest please

Attachments:
Similar questions