Math, asked by adwanimuskan, 1 month ago

find the roots of ax²+bx+c=0​

Answers

Answered by user0888
48

Given: The quadratic equation ax^2+bx+c=0.

Reuired answer: The solutions of the quadratic equation.

____________________

Things to Know

  • Complete the Square

→ It is used because the highest degree is 2. After completing the square, we take the square root to find the solutions.

  • Square Root

→ The number to find when the square of the number is given.

____________________

Solution

ax^2+bx+c=0

\implies a(x^2+\dfrac{b}{a} x)+c=0

After completing the square,

\implies a(x^2+\dfrac{b}{a} x+\dfrac{b^2}{4a^2} )-\dfrac{b^2}{4a} +c=0

\implies a(x+\dfrac{b}{2a} )^2=\dfrac{b^2-4ac}{4a}

\implies (x+\dfrac{b}{2a} )^2=\dfrac{b^2-4ac}{4a^2}

This is equivalent to,

\implies x+\dfrac{b}{2a} =\pm\sqrt{\dfrac{b^2-4ac}{4a^2} }

\implies x+\dfrac{b}{2a} =\dfrac{\pm\sqrt{b^2-4ac}}{2a}

\implies x=\dfrac{-b\pm\sqrt{b^2-4ac} }{2a}

Hence, we derived the quadratic formula x=\dfrac{-b\pm\sqrt{b^2-4ac} }{2a}.

Answered by Anonymous
234

Given :-

  • Quadratic equation is –
  • \sf\boxed{\sf {{ ax²  + bx + c = 0}}}

Need To Find Out :-

  • Roots of the quadratic polynomial

Solution :-

We are given :-

  • \sf\boxed{\sf{{ ax²  + bx + c = 0}}}

Were,

  • a = Coefficient of x².
  • b = Coefficient of x.
  • c = Constant term.

Formula to find out roots:-

  • \red{\sf\boxed{\sf{ { x = \dfrac{-b\pm\sqrt{b^{2}-4ac}}{2a}}}}}

  • Discriminant = b² - 4ac.The discriminant tells us about the nature of roots.

  • If Discriminant is greater than 0, roots are real and distinct.

  • If the Discriminant is equal to 0, roots are equal and real.

  • If the Discriminant is less than 0, no real roots exists.

Now, derivation of Quadratic Formula:-

\sf :\implies ax^{2}+bx+c=0

Multiplying both sides by 4a :-

\sf:\implies 4a^{2}x^{2}+4abx+4ac=0

Adding b² to both sides :-

\sf:\implies 4a^{2}x^{2}+4abx+b^{2}+4ac=b^{2}\\

\sf:\implies (2ax)^{2}+2\times (2ax)\times (b)+b^{2}=b^{2}-4ac\\

\sf:\implies (2ax + b)^{2}=b^{2}-4ac\\

\sf:\implies 2ax + b=\pm\sqrt{b^{2}-4ac}\\

\sf:\implies 2ax =-b\pm\sqrt{b^{2}-4ac}\\

\sf\red {:\implies x=\dfrac{-b\pm\sqrt{b^{2}-4ac}}{2a}}\\

  • Hence,the roots are :-

\sf\purple{\boxed{\sf{{:\implies x=\dfrac{-b+\sqrt{b^{2}-4ac}}{2a}}}}}\\

\sf\purple{\boxed{\sf{{:\implies x=\dfrac{-b-\sqrt{b^{2}-4ac}}{2a}}}}}\\\\

Similar questions