Math, asked by itsmkkkkkk, 1 month ago

Find the roots of each of the following equations, if they exist, by applying the quadratic formula:​

Attachments:

Answers

Answered by Anonymous
1

Given:

 \sf \:  \sqrt{3 {x}^{2} }  - 2 \sqrt{2x}  - 2 \sqrt{3 }  = 0

To Find:

  • Find the roots of each of the following equations

Solution:

On comparing with ax^2+bx+c =0,we get

Here,

  \sf \: a =  \sqrt{3} \\ \sf b =  - 2 \sqrt{2}  \\  \sf \: c =  - 2 \sqrt{3}

 \sf \: (1) = x =  \frac{ - b +  \sqrt{ {b}^{2} - 4ac } }{2a}

Now put the values

 \sf \implies \:   \frac{ - ( - 2 \sqrt{2} ) +  \sqrt{ {( - 2 \sqrt{2)} }^{2}  - 4 \sqrt{3}( - 2 \sqrt{3})  } }{2 \sqrt{3} }  \\  \\  \sf \implies \:   \frac{2 \sqrt{2}  \sqrt{ {(2 \sqrt{2)} }^{2}  + 4 \sqrt{3}  \times 2 \sqrt{3} } }{2 \sqrt{3} }  \\  \\  \sf \implies \:  \frac{2 \sqrt{2} +  \sqrt{ {(2 \sqrt{2} )}^{2}  + 4 \sqrt{3} \times 2 \sqrt{3}  }  }{2 \sqrt{3} }  \\  \\  \sf \implies \:  \frac{2 \sqrt{2}  +  \sqrt{ {(2 \sqrt{2} )}^{2} + 24 } }{2 \sqrt{3} }  \\  \\  \sf \implies \:  \frac{2 \sqrt{2}  + \sqrt{32}  }{2 \sqrt{3} }  \\  \\  \sf \implies \:  \frac{2 \sqrt{2} + 4 \sqrt{2}  }{2 \sqrt{3} }  \\  \\  \sf \implies \:  \frac{6 \sqrt{2}   }{2 \sqrt{3} }  \\  \\  \sf \implies \:  \frac{3 \sqrt{2} }{ \sqrt{3} }  \\  \\  \sf \implies \: x = 6

 \sf \: (2)x =  \frac{ - b -    \sqrt{ {b}^{2} - 4ac }   }{2a}

Now put the values

 \sf \: x =  \frac{ - ( - 2 \sqrt{2}) -  \sqrt{ {(2 \sqrt{2}) }^{2}   + 4 \sqrt{3} - 2 \sqrt{3}  }  }{2 \sqrt{3} }  \\  \\  \sf \: x =  \frac{2 \sqrt{2}  -  \sqrt{2} }{2 \sqrt{3} }  \\  \\  \sf \: x =  \frac{ - 2 \sqrt{2} }{2 \sqrt{3} }  \\  \\  \sf \: x =  -  \sqrt{ \frac{2}{3} }

Therefore x = √6,-√2/3.

Similar questions