Math, asked by NainaMehra, 1 year ago

Find the roots of equation, if they exists, by applying the quadratic formula :

x {}^{2}  + 5x - (a {}^{2}  + a - 6) = 0


Ans: x = ( a - 2 ) or x = - ( a + 3 )

Answers

Answered by Anonymous
5

Given:

x² + 5 x - ( a² + a - 6 ) = 0

==> x² + ( 2 + 3 ) x - ( a² + 3 a - 2 a - 6) = 0

==> x² + ( a + 2 + 3 - a ) x - ( a { a + 3 } - 2 { a + 3 } ) = 0

==> x² + ( a + 3 - a + 2 ) x - ( a - 2 ) ( a + 3 ) = 0

==> x² + ( a + 3 ) x - ( a - 2 ) x - ( a - 2 ) (a + 3 ) = 0

==> x [ x + a + 3 ] - ( a - 2 ) [ x + a + 3 ] = 0

==> [ x + a + 3 ] [ x - a + 2 ]  = 0

==>  Either x + a+ 3 =0

==> x = - a - 3

==> x = - ( a + 3 )

or ,

x - a + 2 = 0

==> x = a - 2

The values of x are  ( a - 2 ) or  - (a + 3 )


Comparing x² + 5 x - a² - a + 6 with a x ² + bx + x

we get:

a =  1

b = 5

c = -a² - a + 6

b² - 4 ac = 5 ² -  4 ( - a² - a + 6 )

==> 25 + 4 a² + 4 a - 24

==> 4 a² + 4 a + 1

==> ( 2a )² + 2 * 2a * 1 +(1)²

==> ( 2 a  + 1 )² ......................(1)

By quadratic formula we know that:

 x = \frac{-b\pm\sqrt{b^2-4ac}}{2a}

From 1 :

 x = \frac{-5 \pm\sqrt{(2a+ 1 )^2 }}{2}

\implies x = \frac { - 5 \pm ( 2 a + 1 ) }{ 2 }

When it is + :

\implies x = \frac { - 5 + 1 + 2 a } { 2 }

\implies x = \frac{ 2 a - 4 }{2}

\implies x = a - 2

or :

\implies x = \frac{ - 5 - 2 a - 1 }{2}

\implies x=\frac{ - 2a - 6}{2}

\implies x= - a - 3

The values of x are  ( a - 2 ) or  - (a + 3 ) by using quadratic formula method.

Hope it helps you

_____________________________________________________________________


NainaMehra: It is mentioned in question solve by quadratic formula
NainaMehra: please solve by quadratic formula
Anonymous: ok wait
Anonymous: done! now see !
NainaMehra: Thanks! !
Anonymous: welcome^_^
FuturePoet: Nice !
Anonymous: several mistakes in my answer!
Answered by siddhartharao77
4

Given Equation is x^2 + 5x - (a^2 + a - 6) = 0

Here, a = 1, b = 5, c = -a^2 - a + 6

The solutions are:

(i)

=> x=\frac{-b+ \sqrt{b^2 - 4ac}}{2a}

=>\frac{-5+\sqrt{(5)^2 - 4(1)(-a^2 - a + 6)}}{2}

=>\frac{-5+\sqrt{25+4a^2+4a-24}}{2}

=>\frac{-5+ \sqrt{4a^2 + 4a+1}}{2}

=>\frac{-5+ \sqrt{(2a + 1)^2}}{2}

=>\frac{-5+2a + 1}{2}

=>\frac{2a-4}{2}

=>\frac{2(a-2)}{2}

=> a-2



(ii)

=>x =\frac{-b- \sqrt{b^2-4ac}}{2a}

=>\frac{-5-\sqrt{(5)^2 - 4(1)(-a^2-a+6)}}{2a}

=>\frac{-5-\sqrt{25+4a^2 + 4a-24}}{2}

=>\frac{-5-\sqrt{(2a + 1)^2}}{2}

=>\frac{-5-2a-1}{2}

=>\frac{-2a-6}{2}

=>-\frac{2(a+3)}{2}

=>-(a+3)


The roots of equation are:

=>x=\boxed{(a - 2), -(a + 3)}



Hope it helps!

Similar questions
Math, 1 year ago