Math, asked by ayush2182002, 1 year ago

find the roots of following quadratic equation: 15x² -10√6x + 10

Answers

Answered by Anonymous
139
[15x^2-10√6x+10=0]by5
3x^2-2√6+2=0
D=b^2-4ac
  =(-2√6)^2 - 4·3·2
  =24-24
  =0
x=(-b±√D)/2a
  =[(--2√6)±√0]/2·3
  =2√6/6
  =√2/√3
Therefore roots are √2/√3 and √2/√3.

ayush2182002: how 2√6/3.2 = √2/√3..?
Anonymous: 2√6/6
Anonymous: so √2/√3
Answered by swethassynergy
3

The roots of the quadratic equation  15x^{2} -10\sqrt{6} x + 10=0  are  \frac{\sqrt{2}  }{\sqrt{3}  }   \ and \ \frac{\sqrt{2}  }{\sqrt{3}  } .

Step-by-step explanation:

Given:

The quadratic equation 15x^{2} -10\sqrt{6} x + 10=0.

To  Find:

The roots of the quadratic equation 15x^{2} -10\sqrt{6} x + 10=0.

Formula Used:

The quardatic equation ax^{2} +bx+c=0.

The roots of quardatic equation  are  given by

x =\frac{-b \± \sqrt{b^{2} -4ac}  }{y}    ----- equation no.01.

Solution:

As given- the quadratic  equation 15x^{2} -10\sqrt{6} x + 10=0.

Compared with the quadratic equation ax^{2} +bx+c=0.

a=  15   ,   b= -10\sqrt{6 }      \    and \    c=10.

Putting value of a,b and c in formula no.01.

x =\frac{-(-10\sqrt{6} ) \± \sqrt{(-10\sqrt{6} )^{2} -4\times15\times10}  }{2\times 15}

   =\frac{10\sqrt{6}  \± \sqrt{600 - 600}  }{30}

   =\frac{10\sqrt{6}  \± 0  }{30}

   =\frac{10\sqrt{6}  \ }{30}

   =\frac{\sqrt{6}  \ }{3}

   =\frac{\sqrt{2} \times\sqrt{3}  }{\sqrt{3} \times \sqrt{3} }

   =\frac{\sqrt{2}  }{\sqrt{3}  }

x=\frac{\sqrt{2}  }{\sqrt{3}  }   \ and \ \frac{\sqrt{2}  }{\sqrt{3}  }

Thus, the roots of quadratic equation  15x^{2} -10\sqrt{6} x + 10=0 are  \frac{\sqrt{2}  }{\sqrt{3}  }   \ and \ \frac{\sqrt{2}  }{\sqrt{3}  } .

Similar questions