Math, asked by mahesh3311, 1 year ago

find the roots of given equation by the methoded
Completing the square : 5 x^2
+ 10x+7√3 =0

Answers

Answered by waqarsd
1

5 {x}^{2}  + 10x + 7 \sqrt{3}  = 0 \\  \\ 5 {x}^{2}  + 10x =  - 7 \sqrt{3}  \\  \\ 5( {x}^{2}  + 2x + 1 - 1) =  - 7 \sqrt{3}  \\  \\ 5( {x}^{2}  + 2x + 1) - 5 =  - 7 \sqrt{3}  \\  \\ 5 {(x + 1)}^{2}  = 5 - 7 \sqrt{3}  \\  \\  {(x + 1)}^{2}  =  \frac{5 - 7 \sqrt{3} }{5}  \\  \\ x =  - 1 +  |  \sqrt{ \frac{5 - 7 \sqrt{3} }{5} } \\  \\ x =  - 1 + \sqrt{ \frac{5 - 7 \sqrt{3} }{5} }  \\  \\ x =  - 1 - \sqrt{ \frac{5 - 7 \sqrt{3} }{5} }

hope it helps.

Similar questions