Math, asked by spoorthisajjan219, 4 months ago

find the roots of Q.E using quadratic formula 1/ x+ 1 + 2/ x+2 = 4/ x+4​

Answers

Answered by jatinderself4
0

Answer:

ksbsjspsn

Step-by-step explanation:

uabejejkejeptrk2jrgo2he8eh3kheirurojdirjeihs8eyeydyeynskjwohwusy2j9su3ksiheidgievsuehhsgwjudehidibejfhkdbeisjbshensogekwheishkwksbjsoejsjekksbsksnkksksheiebishosskjeosjjwksbsoembekeheh2insushwkosyowi2ij1heisusip2jsysjosjjeisuwjosiejoejeidjjshduejidiejduei2i8291ooooosjeueuueeuurueueueueueueueueueuueueuueueueuee

Answered by arin04sharma
1

Step-by-step explanation:

 \frac{1}{x + 1} +  \frac{2}{x + 2} =  \frac{4}{x + 4}

Now,

 \frac{1(x + 2) + 2(x + 1)}{(x + 1)(x + 2)}   =  \frac{4}{x + 4}

 =  >  \frac{x + 2 + 2x + 2}{ {x}^{2} + 2x + x + 2 }  =  \frac{4}{x + 4}

  =  > \frac{3x + 4}{ {x}^{2} + 3x + 2 }  =  \frac{4}{x + 4}

 =  > (3x + 4)(x + 4) = 4( {x}^{2}  + 3x + 2)

 =  > 3 {x}^{2}  + 12x + 4x + 16 = 4 {x}^{2} + 12x + 8

 =  > 3 {x}^{2}  + 16x + 16 = 4 {x}^{2}  + 12x + 8

 =  > 0 = 4 {x}^{2}  - 3 {x}^{2}  + 12x - 16x + 8 - 16

 =  >  {x}^{2}  - 4x - 8 = 0

Now, By using quadratic formula,

That is,

x =  \frac{ - b \binom{ + }{ - }  \sqrt{ {b}^{2}  - 4ac} }{2a}

 = >   x = \frac{ - ( - 4) \binom{ + }{ - }  \sqrt{ {( - 4)}^{2} - 4.1.( - 8) }   }{2.1}

 =  >  x = \frac{4 \binom{ + }{ - } \sqrt{16 + 32}  }{2}

 =  >x =   \frac{4 \binom{ + }{ - } \sqrt{48}  }{2}

 =  > x = \frac{4 \binom{ + }{ - }4 \sqrt{3}  }{2}

 =  >x =   \frac{2(2 \binom{ + }{ - }2 \sqrt{3}) }{2}

 =  > x = 2 \binom{ + }{ - } 2 \sqrt{3}

Therefore, Roots of this Q.E. using quadratic equation are:

2 + 2 \sqrt{3}

And

2 - 2 \sqrt{3}

If you find this answer helpful....

Then mark me as brainliest...

Similar questions