Math, asked by Ria1794, 2 months ago

Find the roots of quad eq. 1\3x²-√11x+1=0 if they exist using quad formula​

Answers

Answered by tyrbylent
0

Answer:

Step-by-step explanation:

\frac{1}{3} x² - √11 x + 1 = 0

D = b² - 4ac = (- √11)² - 4( \frac{1}{3} ) (1) = 11 - 1\frac{1}{3} = 9\frac{3}{4} = \frac{39}{4} = ( \frac{\sqrt{39} }{2}

x_{12} = \frac{1}{2a} ( - b ± √D )

x_{1} = \frac{3}{2} ( √11 - \frac{\sqrt{39} }{2} ) = \frac{3\sqrt{11} }{2} - \frac{3\sqrt{39} }{4} = \frac{3}{4} ( 2√11 - √39 )

x_{2} = \frac{3}{4} ( 2√11 + √39 )

Similar questions