Math, asked by sani23, 1 year ago

find the roots of quadratic equation 16x^2 -24x - 1= 0 by using quadratic formula

Answers

Answered by tardymanchester
153

Answer:

The roots are x=\frac{3+\sqrt{10}}{4},\frac{3-\sqrt{10}}{4}

Step-by-step explanation:

Given : The quadratic equation - 16x^2 -24x - 1= 0

To find : The roots of quadratic equation ?

Solution :

Using quadratic formula,

General form - ax^2+bx+c=0

D=b^2-4ac

Solution is x=\frac{-b\pm\sqrt{D}}{2a}

Equation is 16x^2 -24x - 1= 0

where, a=16 , b=-24, c=-71

D=b^2-4ac

D=(-24)^2-4(16)(-1)

D=576+64

D=640

Solution is x=\frac{-b\pm\sqrt{D}}{2a}

x=\frac{-(-24)\pm\sqrt{640}}{2(16)}

x=\frac{24\pm8\sqrt{10}}{16}

x=\frac{3\pm\sqrt{10}}{4}

Therefore, The roots are x=\frac{3+\sqrt{10}}{4},\frac{3-\sqrt{10}}{4}

Answered by Hansika4871
5

Given:

A quadratic equation 16x² - 24x - 1 = 0.

To Find:

The roots of the above quadratic equation using the quadratic formula.

Solution:

The given problem can be solved using the concepts of quadratic equations.

1. Consider a quadratic equation ax² + b x + c = 0. The roots of the quadratic equation are given by the formula,

=> Roots = (\frac{-b+\sqrt{b^2 - 4ac} }{2a }, \frac{-b-\sqrt{b^2 - 4ac} }{2a } ).

2. Use the formula mentioned above to find the roots.

=> 16x^2 -24x - 1= 0, ( a = 16, b = -24 ),

=> Roots = (\frac{24 + \sqrt{(24)^2 - 4 * 16*(-1)} }{2*16} ,\frac{24 - \sqrt{(24)^2 - 4 * 16*(-1)} }{2*16}),

=> Roots = (\frac{24+\sqrt{640} }{32}, \frac{24-\sqrt{640} }{32} ),

=> Roots = (\frac{8*3+8\sqrt{10} }{8*4} ,\frac{8*3-8\sqrt{10} }{8*4}),

=> Roots = [(3+√10)/4, (3-√10)/4].

3. Hence the roots of the equation are (3±√10)/4.

Therefore, the roots of the equation 16x² - 24x - 1 = 0 are( \frac{3+\sqrt{10} }{4}, \frac{3-\sqrt{10} }{4}).

Similar questions