Math, asked by takeshwarchandra1976, 11 months ago

Find the roots of quadratic equation √2x^2-2x-√3

Answers

Answered by gilllakhveer660
1

Answer:

√2x^2-2x-√3

D=(-2)^2-4*√2*(-√3)

D=4+4√6

x=2^2+-√4+4√6/2√2

x=4+-2√6/2√2

x=4+2√6/2√2or4-2√6/2√2

Answered by harendrachoubay
0

x = \dfrac{1+\sqrt{1+\sqrt{6}}}{\sqrt{2}} or, \dfrac{1-\sqrt{1+\sqrt{6}}}{\sqrt{2}}

Step-by-step explanation:

The given quadratic equation:

\sqrt{2}x^2 -2x -\sqrt{3}

Here, a = \sqrt{2} , b = - 2 and c = -\sqrt{3}

To find, the roots of the given quadratic equation = ?

∵ D = b^{2}-4ac

= (-2)^{2}-4(\sqrt{2})(-\sqrt{3})

= 4+4\sqrt{6}

= 4(1+\sqrt{6}) > 0, the roots are real and unequal.

x=\dfrac{-b±\sqrt{D}}{2a}

=\dfrac{-(-2)±\sqrt{4(1+\sqrt{6})}}{2\sqrt{2}}

=\dfrac{2±2\sqrt{1+\sqrt{6}}}{2\sqrt{2}}

=\dfrac{2(1±\sqrt{1+\sqrt{6}})}{2\sqrt{2}}

=\dfrac{1±\sqrt{1+\sqrt{6}}}{\sqrt{2}}

= \dfrac{1+\sqrt{1+\sqrt{6}}}{\sqrt{2}} or, \dfrac{1-\sqrt{1+\sqrt{6}}}{\sqrt{2}}

\dfrac{1+\sqrt{1+\sqrt{6}}}{\sqrt{2}} or, \dfrac{1-\sqrt{1+\sqrt{6}}}{\sqrt{2}}

Similar questions