Math, asked by kalpanagupta9317, 10 months ago

Find the roots of quadratic equation √2x²+7x+5√2=0 , by factorisations method.

Answers

Answered by BrainlyIAS
7

Given quadratic equation is √2x²+7x+5√2=0 .

We need to factorize this equation.

√2x² + 7x + 5√2 = 0

Now factorize middle term of the equation using middle term splitting method. [ 7 = 2 + 5 & 5 * 2 = 10 ]

√2x² + 2x + 5x + 5√2 = 0

⇒ √2x ( x + √2 ) + 5 ( x + √2 ) = 0

( x + √2 ) ( √2x + 5 )

x = - √2 & x = - 5 /√2

So , Roots of the quadratic equation √2x²+7x+5√2=0 are - √2 & - 5 / √2

Answered by BrainlyConqueror0901
21

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Value\:of\:x=-\sqrt{2}\:and\:\frac{-5}{\sqrt{2}}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies  \sqrt{2}{x}^{2}  + 7x + 5 \sqrt{2}  = 0 \\  \\  \red{\underline \bold{To \: Find :}} \\  \tt: \implies Value \: of \: x = ?

• According to given question :

\bold{As \: we \: know \: that} \\  \tt: \implies  \sqrt{2}  {x}^{2}  + 7x + 5 \sqrt{2}  = 0 \\  \\ \tt: \implies \sqrt{2}  {x}^{2}  + 2x + 5x + 5 \sqrt{2}  = 0 \\  \\ \tt: \implies  \sqrt{2} x(x +  \sqrt{2} ) + 5(x +  \sqrt{2} ) = 0 \\  \\ \tt: \implies ( \sqrt{2}x + 5)(x +  \sqrt{2} ) = 0 \\  \\  \green{\tt: \implies x =  -  \sqrt{2}  \: and \:  \frac{ - 5}{\sqrt{2} } } \\  \\  \bold{Alternate \: method : } \\  \tt: \implies x =  \frac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a}  \\  \\ \tt: \implies x =  \frac{ - 7 \pm \sqrt{ {7}^{2} - 4 \times  \sqrt{2} \times 5 \sqrt{2}   } }{2 \times  \sqrt{2} }  \\  \\ \tt: \implies x =  \frac{ - 7 \pm  \sqrt{49  -40 } }{2 \sqrt{2} }  \\  \\ \tt: \implies x =  \frac{ - 7 \pm 3}{2 \sqrt{2} }  \\  \\  \green{\tt: \implies x =  -  \sqrt{2}  \: and \:   \frac{ - 5}{ \sqrt{2} } }


Anonymous: :allo_love: Awesome ❤️ answer ♥️
BrainlyConqueror0901: thnx a lot :hug:
Similar questions