Math, asked by subramaniamwindmill, 8 months ago

find the roots of quadratic equation√2x²+7x+5√2​

Answers

Answered by Anonymous
19

\small\orange {\sf{Bonjour\ Mate!}}

\small\green {\sf{Answer }}

√2 x² +7x +5 √2 = 0

⇒ √2 x² + 5x + 2x + 5√2 = 0

⇒ √2x² + 5x + √2*√2*x + 5√2=0

⇒ x(√2x + 5) + √2(√2x + 5) =0

⇒ (x+√2)(√2x+5) = 0

ᴛʜᴀᴛ ɢɪᴠᴇs x= - √2 ᴏʀ x= - 5/√2

Answered by TheSentinel
26

\purple{\underline{\underline{\pink{\boxed{\boxed{\red{\star{\sf Question:}}}}}}}} \\ \\

\rm{Find \  the \  roots \  of \  quadratic \.  equation}

\rm{  \sqrt{2} {x}^{2}  + 7x + 5 \sqrt{2}  = 0 }

_________________________________________

\purple{\underline{\underline{\orange{\boxed{\boxed{\green{\star{\sf Answer:}}}}}}}} \\ \\

\rm{\blue{\underline{\red{Roots \ of \ the \ quadratic \ equation \ are:}}}}

\rm{\blue{\boxed{\red{ -  \frac{5}{ \sqrt{2} } \ and \  -  \sqrt{2} }}}}

_________________________________________

\sf\large\underline\pink{Given:} \\ \\

\rm{The \ quadratic \ equation \ is}

\rm{  \sqrt{2}{x }^{2}  + 7x + 5 \sqrt{2}  = 0 }

_________________________________________

\sf\large\underline\blue{To \ Find} \\ \\

\rm{Roots  \ of  \ the \ quadratic \ equation}

_________________________________________

\green{\underline{\underline{\red{\boxed{\boxed{\purple{\star{\sf Solution:}}}}}}}} \\ \\

\rm{The \ quadratic \ equation \ is}

\rm{  \sqrt{2}{x }^{2}  + 7x + 5 \sqrt{2}  = 0 }

\rm{Here ,}

\rm{We \ have \ to \ split \ middle \ term \ such }

\rm{that  } \\ \\

\rm\longrightarrow{Product \ of \ first \ and \ last \ term \ is \ 10}

\rm\longrightarrow{Sum \ of \ first \ and \ last \ term \ is \ 7}

\rm\implies{ \sqrt{2} {x}^{2}  + 2x + 5x + 5 \sqrt{2}  = 0} \\ \\

\rm\implies{ \sqrt{2} {x}^{2}  + 2x + 5x + 5 \sqrt{2}  = 0} \\ \\

\rm\implies{x \sqrt{2}( {x} + \sqrt{2}) + 5(x+ \sqrt{2}) = 0} \\ \\

\rm\implies{ (x \sqrt{2}+5)({x} + \sqrt{2})} \\ \\

\rm\longrightarrow{(x \sqrt{2}+5)=0 \ and \ ({x} + \sqrt{2})=0} \\ \\

\rm\therefore{x \sqrt{2}= -5} \\ \\

\rm\therefore{x \  = \  - \frac{5}{\sqrt{2}}} \\ \\

\rm{And} \\ \\

\rm\therefore{{x} + \sqrt{2}= - \sqrt{2}} \\ \\

\rm{\blue{\underline{\red{Roots \ of \ the \ quadratic \ equation \ are:}}}}

\rm{\blue{\boxed{\red{ -  \frac{5}{ \sqrt{2} } \ and \  -  \sqrt{2} }}}}

_________________________________________

\tt\orange{Hope \ it \ Helps \ :))}

Similar questions