Math, asked by classesonly3, 3 days ago

Find the roots of quadratic equation if exists 2x2 +3x+10=0.

Answers

Answered by Anonymous
1

Answer:

For existence of root , First we find the discriminant (D)

D = - 4ac

= - 4×2×10

= 9 - 80

= -71 .

Since the discriminant is negative so root will be imaginary .

x = -b+- D/2a

x = -3 -i√71 /4 or -3+i√71/4

Hope you understand

Answered by jaswasri2006
1

2x² + 3x + 10 = 0

here , [ a = 2 , b = 3 , c = 10 ]

finding Roots by Quadratic formula :-

 \huge \rm root s =  \frac{ {b}^{2} \pm \sqrt{ {b}^{2} - 4ac \:  }  }{2a}

so ,

\rm \alpha (or) \beta  =  \frac{ {3}^{2}  \pm \sqrt{ {(3)}^{2}  - 4(2)(10)}   }{2(2)}  \\  \\   \\   =  \frac{9  \pm \sqrt{9 - 40} }{4}   =  \frac{9 \pm \sqrt{31} }{4}  \\  \\  \rm so \:  \:   \orange{\underline{  \pink{ \: \: roots \:  \:  \:  \: are \:  \:  \:  :  \:  \:  \: }}} \\  \\  \\  \sf    \blue{\boxed{ \sf\frac{9 +  \sqrt{31} }{4}  }}\:  \:  \:  \: and \:   \:  \: \:  \red{ \boxed{ \frac{ \sf9 -  \sqrt{31} }{4} }}

Similar questions