Math, asked by PrAnAyNaNi, 1 year ago

find the roots of quadratic equation x square+root2x-12=0​

Answers

Answered by Anonymous
5

Answer:

Hope this helps!

x² + √2 x - 12 = 0

=> x = ( -√2 ± √( √2² - 4×1×(-12) ) ) / 2

     = ( -√2 ± √( 2 + 48 ) ) / 2

     = ( -√2 ± √50 ) / 2

     = ( -√2 ± 5√2 ) / 2

     = -6√2 / 2   or 4√2 / 2

     = -3√2  or 2√2


Anonymous: Plz mark this brainliest! Have a great day!
Answered by lastbenchstudent
5

root of quadratic equation

a {x}^{2}  + bx + c = 0

is

x =  \frac{ - b \:   \binom{ + }{ - }   \sqrt{ {b}^{2}  - 4ac } }{2a}

so in given equation

x^2 + (root 2 )x -12 =0

a = 1

b = root 2

c = -12

so b^2-4ac = (root 2)^2 - 4 ×1×(-12)= 2 + 48 = 50

so now roots are

x =  \frac{ -  \sqrt{2}  \:   \binom{ + }{ - }   \sqrt{ 50}}{2}  \: \\  \\

x =  \frac{ -  \sqrt{2}  \:    +    5\sqrt{ 2}}{2}  \:

and

x =  \frac{ -  \sqrt{2}  \:     -     5\sqrt{ 2}}{2}  \:

Similar questions