Math, asked by sudheendralaxani, 6 months ago

find the roots of quadric equation 2x square +x-4=o using quadric formula​

Answers

Answered by Anonymous
11

Solution:-

Given equation is

 \rm \to2 {x}^{2}  + x - 4 = 0

Compare with

  \rm \to \: a {x}^{2}  + bx + c = 0

So

 \to \rm \: a \:  = 2,b = 1 \: and \: c =  - 4

Quadratic formula is

 \rm \: x =  \dfrac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a}

Put the value on formula

 \rm \to \: x =  \dfrac{ - 1 \pm \sqrt{ {1}^{2}  - 4 \times 2 \times  - 4} }{2 \times 2}

  \to\rm \: x =  \dfrac{ - 1 \pm \sqrt{1 + 32} }{4}

  \to\rm \: x =  \dfrac{ - 1 \pm \sqrt{33} }{4}

 \rm \to \: x =  \dfrac{ - 1 +  \sqrt{33} }{4} ,x =  \dfrac{ - 1 -  \sqrt{33} }{4}

Answer

 \rm \to \: x =  \dfrac{ - 1 +  \sqrt{33} }{4} ,x =  \dfrac{ - 1 -  \sqrt{33} }{4}

Answered by Mister360
4

Step-by-step explanation:

Given:-

{2x}^{2 }+x-4=0

To find:-

The roots of equation

Solution:-

Here

by comparing with equation

{ax}^{2}+{bx}+c we get

a=2,b=1,c=-4

Let's the roots are={\alpha} \:and\:{\beta}

Let's put the quadric formula

{\boxed{{\alpha}={\frac {-b+{\sqrt {{b}^{2}-4ac}}}{2a}}}}

[substitute the values]

{:}\longrightarrow{\cfrac {(-1)+{\sqrt {{(1)}^{2}-4×2×(-4)}}}{2×2}}

{:}\longrightarrow{\dfrac{(-1)+{\sqrt {1+32}}}{4}}

{:}\longrightarrow{\underline{\boxed{\bf {{\alpha}={\dfrac{-1+{\sqrt {33}}}{4}}}}}}

{\boxed{{\beta}={\dfrac {-b-{\sqrt {{b}^{2}-4ac}}}{2a}}}}

[Substitute the values]

{:}\longrightarrow{\dfrac {(-1)-{\sqrt {{(1)}^{2}-4×2×(-4)}}}{2×2}}

{:}\longrightarrow{\dfrac {(-1)-{\sqrt {1+32}}}{4}}

{:}\longrightarrow{\underline{\boxed{\bf {{\beta}={\dfrac {-1-{\sqrt{33}}}{4}}}}}}

\thereforeThe roots of equation are

{\underline{\boxed{\bf {{\dfrac{-1+{\sqrt {33}}}{4}}\:,\:{\dfrac {-1-{\sqrt {33}}}{4 }}}}}}

Extra information:-

  • The Quadric formula is

{\boxed {x={\cfrac {-b{\underline {+}}{\sqrt {{b}^{2}-4ac}}}{2a}}}}


Anonymous: Great!
Similar questions