Math, asked by shrutirajak, 11 months ago

find the roots of
 {x}^{2} - 3x - 10 = 0
by 1. quadratic formula method 2. factorization method and 3. completing square method ​

Answers

Answered by Nereida
5

✨HOLA✨

1.By quadratic formula method

D=b^2-4ac

 = ( - 3) {}^{2}  - 4(1)( - 10)

 = 9 + 40

 = 49

By quadratic formula,

x=((-b)± √D)/2a

x=((-3)±√49)/2 (1)

x=((-3)±7)/2

If x=((-3)-7)/2

x=(-10)/2

x=(-5)

If x=((-3)+7)/2

x=4/2

x=2

2.Factorisation Method

  {x}^{2}  - 3x  - 10

  = {x}^{2}  - 5x + 2x - 10

 = x(x - 5) + 2(x - 5)

 = (x + 2)(x - 5)

x=(-2),5

3. Completing square method

x {}^{2}  - 3x - 10 = 0

x {}^{2}  - 3x = 10

Adding ((1/2)× coefficient of x)^2 in both sides that is 9 by 4,

 {x}^{2}  - 3x + (9 \div 4) = 10 + (9 \div 4)

 {x}^{2}  - (2  ( - 3 \div 2)x) +  ( - 3 \div 2) {}^{2}  = (40 + 9) \div 4

(x  + (3 \div 2)) {}^{2}  = 49 \div 4

x + (3 \div 2) =  \sqrt{49 \div 4}

x + (3 / 2) = ±(7 /2)

x=(3/2)±(7/2)

If x=(3/2)-(7/2)

x=(4/2)

x=2

If x=(3/2)+(7/2)

x=10/2

x=5

HOPE IT HELPS UHH #CHEERS

Similar questions