Math, asked by eswarbobby452, 10 months ago

find the roots of the equation 1/x-1/x-2 =3, where (x≠0,2) by using formula ​

Answers

Answered by prajwal1697
11

 \frac{1}{x}  -  \frac{1}{x - 2}  = 3 \\ by \: taking \: lcm \: and \: cross \: multiplying \\  \: we \: get \\  =  >  \frac{(x - 2) - x}{(x)(x - 2)}  = 3 \\  =  >  - 2 = 3(x)(x - 2) \\  =  >  - 2 = 3 {x}^{2}  - 6x \\  =  > 3 {x}^{2}  - 6x + 2 = 0 \\ here \: we \: will \: use \: formula \: to \\  \: solve \: quadratic \: equation \:  \\  =  > x =  \frac{ - b +  | \sqrt{ {b}^{2} - 4ac } | }{2a}  \\  =  > x =   \frac{ - ( -6) +  | \sqrt{ {( - 6) }^{2}  - 4(3)2} | }{2 \times 3}  \\  =  > x =  \frac{6 +  | \sqrt{36 - 24} | }{6}  \\  =  >x =   \frac{6 +  | \sqrt{12} | }{6}  \\  =  > x =  \frac{ 6 +  |2 \sqrt{3} |}{6 }   \\  =  > x = \frac{ 3 +  \sqrt{3} }{3} .and \:  \frac{3 -  \sqrt{3} }{3}  \\ hope \: it \: helps \: u \:

Similar questions