Math, asked by sumanthk4632, 2 months ago

Find the roots of the equation x+1/x=3 ,​

Answers

Answered by Aryan0123
7

Solution:

\tt{x +  \dfrac{1}{x}  = 3} \\  \\

Solve the LHS by taking LCM

\dashrightarrow \:  \:  \tt{ \dfrac{ {x}^{2}  + 1}{x}  = 3} \\  \\

Transpose x to RHS

\dashrightarrow \:  \:  \tt{ {x}^{2}  + 1 = 3x} \\  \\

Bring all terms to LHS so that it would be easier to factorise.

\dashrightarrow \:  \:  \tt{ {x}^{2}  - 3x + 1 = 0} \\  \\

Factorise the polynomial by applying quadratic formula

\dashrightarrow \:  \: \tt{ x = \dfrac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}} \\  \\

Now,

\dashrightarrow \:  \:  \tt{x =  \dfrac{ - ( - 3) \pm \sqrt{( - 3)^{2} - 4(1)(1) } }{2(1)} } \\  \\

On further simplifying

\dashrightarrow \:  \:  \tt{x =  \dfrac{3 \pm \sqrt{9 - 4} }{2} } \\  \\

So,

 \boxed{ \bf{x =  \dfrac{3 \pm \sqrt{5} }{2}}} \\

Answered by Anonymous
23

Step-by-step explanation:

\\ \sf{:}\longrightarrow x+\dfrac{1}{x}=3

\\ \sf{:}\longrightarrow \dfrac{x^2+1}{x}=3

\\ \sf{:}\longrightarrow x^2+1=3x

\\ \sf{:}\longrightarrow x^2-3x+1=0

\\ \sf{:}\longrightarrow x^2-3x=-1

\\ \sf{:}\longrightarrow 4(x^2-3x)=4(-1)

\\ \sf{:}\longrightarrow 4x^2-12x=-4

\\ \sf{:}\longrightarrow (2x)^2-2(2x)(3)=-4

\\ \sf{:}\longrightarrow (2x)^2-2(2x)(3)+(3)^2=(3)^2-4

\\ \sf{:}\longrightarrow (2x-3)^2=9-4

\\ \sf{:}\longrightarrow (2x-3)^2=5

\\ \sf{:}\longrightarrow \sqrt{(2x-3)^2}=\sqrt{5}

\\ \sf{:}\longrightarrow 2x-3=\underline{+}\sqrt{5}

\\ \sf{:}\longrightarrow 2x=3\underline{+}\sqrt{5}

\\ \sf{:}\longrightarrow{\underline{\boxed{\bf  x=\dfrac{3\underline{+}\sqrt{5}}{2}}}}

Similar questions