Math, asked by maths9123, 9 months ago

find the roots of the equation (x^2+3x)^2- (x^2 + 3 X) - 6 = 0....
plzz ans

Answers

Answered by Anonymous
5

Solution :-

(x² + 3x)² - (x² + 3x) - 6 = 0

Substituting x² + 3x = y in the above equation

⇒ y² - y - 6 = 0

Splitting the middle term

⇒ y² - 3y + 2y - 6 = 0

⇒ y(y - 3) + 2(y - 3) = 0

⇒ (y + 2)(y - 3) = 0

⇒ y + 2 = 0 or y - 3 = 0

Again, substituting y = x² + 3x in the above equations

⇒ x² + 3x + 2 = 0 or x² + 3x - 2 = 0

1. Solving x² + 3x + 2 = 0

⇒ x² + 3x + 2 = 0

⇒ x² + 2x + x + 2 = 0

⇒ x(x + 2) + 1(x + 2) = 0

⇒ (x + 1)(x + 2) = 0

⇒ x + 1 = 0 or x + 2 = 0

⇒ x = - 1 or x = - 2

2. Solving x² + 3x - 3 = 0

Using Quadratic formula

⇒ x = (-b ± √D)/2a

D = b² - 4ac = 3² - 4(1)( - 3 ) = 9 + 12 = 21

⇒ x = ( - 3 ± √21)/2

⇒ x = ( - 3 + √21)/2 or x = ( - 3 - √21)/2

Therefore the roots of the given equations are - 1, - 2, (-3 + √21)/2 and (-3 - √21)/2.

Similar questions