Find the roots of the equation x2 – 3x – m (m + 3) = 0, where m is a constant
Answers
Answered by
1
Step-by-step explanation:
x2 – 3x – m(m + 3) = 0
D = b2 – 4ac
D = (- 3)2 – 4(1) [-m(m + 3)]
= 9 + 4m (m + 3)
= 4m2 + 12m + 9 = (2m + 3)2
Important Questions for Class 10 Maths Chapter 4 Quadratic Equations 1
∴ x = m + 3 or -m
Answered by
7
Given quadratic equation is
can be rewritten as
can be re-arranged as
Additional Information :-
Nature of roots :-
Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.
If Discriminant, D > 0, then roots of the equation are real and unequal.
If Discriminant, D = 0, then roots of the equation are real and equal.
If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.
Where,
Discriminant, D = b² - 4ac
Similar questions