Math, asked by dhanalaxmisingreddy, 5 months ago

Find the roots of the equation x² + x (c-b) + (c-a) (a - b) = 0 help me plzzz..... i'm posting this qstn for 11th time​

Answers

Answered by jaidansari248
1

x =  \frac{ - (c - b) \frac{ + }{}  \sqrt{ {(c - b)}^{2}  - 4(c - a)(a - b)} }{ 2 }  \\  =  \frac{ - c + b \frac{ + }{}  \sqrt{ {c}^{2}  - 2cb +  {b}^{2} - 4(ac - bc -  {a}^{2}   + ab} )}{2}  \\  =  \frac{ - c + b \frac{ + }{}  \sqrt{ {c}^{2} - 2cb +  {b}^{2} - 4ac + 4bc + 4 {a}^{2}    - 4ab} }{2}  \\  =  \frac{ - c + b \frac{ + }{}  \sqrt{ {c}^{2}  + 2bc +  {b}^{2} - 4 {ac}^{}    - 4ab + 4 {a}^{2} }}{2}  \\  let \: the \: value \: under \: square \: root \: be \: t \\ x =  \frac{ - c + b \frac{ + }{} t}{2}  \\ x _{1} =  \frac{ - c + b + t}{2}  \:  \:  \:  \:  \:  \: x _{2} =  \frac{ - c + b - t}{2}

Similar questions