Math, asked by priyabratadhar96, 5 months ago

find the roots of the equation x²+x-(m+2)(m+1)=0​

Answers

Answered by Anonymous
10

 \bf \color{brown}{ \underline{ \underline{Solution :}}} \\  \\  \\  \tt \:  {x}^{2}  + x - (m + 2)(m  +  1) = 0 \\  \\  \implies \tt \:  {x}^{2}    +  (m + 2 )x- (m  +  1)x  -  (m + 2)(m + 1) = 0 \\  \\  \implies \tt \: x(x + m + 2) - (m + 1)(x  + m +  2) = 0 \\  \\  \implies \tt (x + m + 2)(x - m - 1) = 0 \\  \\  \begin{array}{c|c}  \implies  \tt (x + m + 2) = 0& \implies \tt(x - m - 1) = 0 \\ \\  \\   \tt   \therefore\green{ \underline{ \boxed{\tt{x =  - (m + 2)}}}}&  \therefore\green{ \underline{ \boxed{\tt{x =  (m + 1)}}}}\end{array} \\  \\  \\  \\  \tt \colorbox{aqua}{@StayHigh}

Answered by DILhunterBOYayus
14

\huge{\underline{\underbrace{\mathcal\color{gold}{Answer}}}}

\blue{x^2+x−(m+2)(m+1)=0}

⟹\green{x^2+(m+2)x−(m+1)x−(m+2)(m+1)=0}

⟹\purple {x~(x+m+2)−(m+1)~(x+m+2)~=0}

⟹\red{(x+m+2)~(x−m−1)=0}

⟹(x+m+2)=0\\∴x=−(m+2)

⟹(x−m−1)=0\\∴x=(m+1)

Similar questions