Find the roots of the equation
x⁴-(√5+√2)x²+√10=0
Answers
Answer:
Step-by-step explanation:
x^2 = [ (sqrt 2 + sqrt 5) + - (sqrt 5 - sqrt2 ) ] / 2.
can verify by substituting the values as x^2 = sqrt5 or sqrt2. and x^4 = 5 or 2.
Answer :-
Roots of the equation are ± ∜5 and ± ∜2.
Explanation :-
x^4 - (√5 + √2)x² + √10 = 0
(x²)² - (√5 + √2)x² + √10 = 0
Let x² = y
⇒ y² - (√5 + √2)y + √10 = 0
Comparing the above equation with ay² + by + c = 0 we get,
• a = 1
• b = - (√5 + √2)
• c = √10
Discriminant (D) = b² - 4ac
= { - (√5 + √2) }² - 4( 1 )( √10 )
= (√5 + √2)² - 4√10
= ( √5 )² + ( √2 )² + 2( √5 )( √2 ) - 4( √5 )( √2 )
= ( √5 )² + ( √2 )² - 2( √5 )( √2 )
= (√5 - √2)²
Finding roots of the equation by Quadratic formula
y = ( - b ± √D ) / 2a
⇒ y = [ - { - (√5 + √2) } ± √(√5 - √2)² ] / 2( 1 )
⇒ y = {√5 + √2 ± (√5 - √2) } / 2
⇒ y = { √5 + √2 + (√5 - √2) } / 2 or y = { √5 + √2 - (√5 - √2) } / 2
⇒ y = (√5 + √2 + √5 - √2) / 2 or y = (√5 + √2 - √5 + √2) / 2
⇒ y = 2√5/2 or y = 2√2/2
⇒ y = √5 or y = √2
But y = x²
⇒ x² =√5 or x² = √2
Taking square root on both sides
⇒ √x² = ± √√5 or √x² = ± √√2
⇒ x = ± ∜5 or x = ± ∜2
∴ roots of the equation are ± ∜5 and ± ∜2.