find the roots of the following equation . 1/x+y - 1/x-7 = 11/30
Answers
Answered by
7
Answer:
1 Or 2 roots of given Quadratic equation.
Explanation:
Given
\frac{1}{x+4}-\frac{1}{x-7}=\frac{11}{30}
\implies \frac{[x-7-(x+4)]}{(x+4)(x-7)}=\frac{11}{30}
\implies\frac{x-7-x-4}{x^{2}-7x+4x-28}=\frac{11}{30}
\implies\frac{-11}{x^{2}-3x-28}=\frac{11}{30}
Do the cross multiplication, we get
=> 30 = 11(x²-3x-28)/(-11)
Answered by
0
Step-by-step explanation:
1(x-7)-1(x+y)/(x+y)(x-7) =11/30
x-7-x-y/x(x-7) +y(x-7) =11/30
-7-y/x^2-7x+xy-7y=11/30
30(-7-y)=11(x^2-7x+xy-7y)
-210-30y=11x^2-77x+11xy-77y
-210-11x^2+77x-11xy+77y-30y
-11x^2+77x-11xy+47y
Similar questions
Psychology,
1 month ago
Geography,
1 month ago
Math,
2 months ago
Social Sciences,
2 months ago
English,
9 months ago
Geography,
9 months ago