Math, asked by tejalkartikraval, 20 hours ago

Find the roots of the following equation by method of factorisation where p(x ) = 2x^2-x+1/8=0​

Answers

Answered by talpadadilip417
5

   \scriptsize\colorbox{lightyellow} {\text{ \bf♕ Brainliest answer }}

 \rule{300pt}{0.1pt}

\mathbb\red{ \tiny A \scriptsize \: N \small \:S \large \: W \Large \:E \huge \: R}

 \rule{300pt}{0.1pt}

Given equation is \rm 2 x^{2}-x+\frac{1}{8}=0

Multiplying both sides by 8 , we get

\[ \begin{array}{l} \rm \Rightarrow 16 x^{2}-8 x+1=0 \\ \\  \rm \Rightarrow 16 x^{2}-(4 x+4 x)+1=0 \\  \\  \rm\Rightarrow 16 x^{2}-4 x-4 x+1=0 \\ \\  \rm \Rightarrow(4 x-1)-1(4 x-1)=0 \\ \\  \rm \Rightarrow(4 x-1)(4 x-1)=0 \end{array} \]

 \text{Now, \( \rm \quad 4 x-1=0 \Rightarrow x=\dfrac{1}{4} \)}

Hence, the roots of the equation \rm 2 x^{2}- x+\dfrac{1}{8}=0 are \rm \dfrac{1}{4} and \rm \dfrac{1}{4}.

Similar questions