Math, asked by vaishnavirajdeep, 2 months ago

find The Roots of the following equations:
I) x/8+8/=x/2+2/x
2) 2x+1/x+1=x+8/x+4

Answers

Answered by MonoranjanDas
0

Answer:

2)sol {}^{n}

 \frac{2x + 1}{x + 1}  =  \frac{x + 8}{x + 4}

 =>(2x + 1)(x + 4)=(x+ 8)(x+1)

 =  > 2x {}^{2} + 8x + x + 4 = x {}^{2} + x + 8x + 8

 =  > x {}^{2}  = 4

 =  > x =   \sqrt{4}

so \:  \: x = 2 \:  \: or \:  - 2

Answered by varadad25
2

Answer:

1) The roots of the equation are x = 4 and x = - 4.

2) The roots of the equation are x = 2 and x = - 2.

Step-by-step-explanation:

1)

The given equation is

( x / 8 ) + ( 8 / x ) = ( x / 2 ) + ( 2 / x )

⇒ ( x² + 64 ) / 8x = ( x² + 4 ) / 2x

⇒ x² + 64 = ( x² + 4 ) * 8x / 2x

⇒ x² + 64 = ( x² + 4 ) * 4

⇒ x² + 64 = 4x² + 16

⇒ 64 - 16 = 4x² - x²

⇒ 3x² = 48

⇒ x² = 48 / 3

⇒ x² = 16

⇒ x = ± √16

x = ± 4

The roots of the equation are x = 4 and x = - 4.

─────────────────────

2)

The given equation is

( 2x + 1 ) / ( x + 1 ) = ( x + 8 ) / ( x + 4 )

⇒ ( 2x + 1 ) ( x + 4 ) = ( x + 8 ) ( x + 1 )

⇒ 2x ( x + 4 ) + 1 ( x + 4 ) = x ( x + 1 ) + 8 ( x + 1 )

⇒ 2x² + 8x + x + 4 = x² + x + 8x + 8

⇒ 2x² + 9x + 4 = x² + 9x + 8

⇒ 2x² + 4 = x² + 8

⇒ 2x² - x² = 8 - 4

⇒ x² = 4

⇒ x = ± √4

x = ± 2

The roots of the equation are x = 2 and x = - 2.

Similar questions