Math, asked by AsifKhan6672, 10 months ago

Find the roots of the following quadratic equation if they exist by the method of completing square 2x squared minus 7x + 3 equal to 0

Answers

Answered by Joannaalex
0

Answer:

x=√43+7/2 or -√43+7/2

Step-by-step explanation:

2x^2-7x+3=0

2x^2-7=-3

divide both sides by 2

x^2-7/2=-3/2

3rd term=( 1/2*-7/2)^2

=( -7/2)^2

=49/4

add 49/4 on both sides

x^2-7/2+49/4=-3/2+49/4

x^2-7/2+(7/2)^2=-6/49/4

(x^2-7/2)^2=43/4

taking square root

x-7/2=+/-√43/2

therefore x=√43+7/2 or -√43+7/2

Answered by sourya1794
42

{\bold{\blue{\underline{\red{S}\pink{ol}\green{uti}\purple{on:-}}}}}

Given quadratic equation,

  • 2x² - 7x + 3 = 0

To find :-

  • Roots of the quadratic equation

Solution :-

  • a = 2 , b = -7 and c = 3

So,

D = b² - 4ac

D = (-7)² - 4 × 2 × 3

D = 49 - 24

D = 25

So,

D > 0

Then,

\rm\:{2x}^{2}-7x+3=0

\rm\longrightarrow\:2{x}^{2}-7x=-3

Dividing both side by the value of a

\rm\longrightarrow\:{x}^{2}-\dfrac{7}{2}x=\dfrac{-3}{2}

\rm\star\:Adding\:\bigg(\dfrac{b}{2a}\bigg)^2\:on\:both\:the\:sides

\rm\:{x}^{2}-\dfrac{7}{2}x+\bigg(\dfrac{7}{4}\bigg)^2=\dfrac{-3}{2}+\bigg(\dfrac{7}{4}\bigg)^2

\rm\longrightarrow\:{x}^{2}-\dfrac{7}{2}+\dfrac{49}{16}=\dfrac{-3}{2}+\dfrac{49}{16}

\rm\longrightarrow\:({x})^{2}-2\times\:x\times\:\dfrac{7}{4}+\bigg(\dfrac{7}{4}\bigg)^2=\dfrac{-24+49}{16}

\rm\longrightarrow\:\bigg(x-\dfrac{7}{4}\bigg)^2=\dfrac{25}{16}

\rm\longrightarrow\:x-\dfrac{7}{4}=\pm\sqrt{\dfrac{25}{16}}

\rm\longrightarrow\:x-\dfrac{7}{4}=\pm\dfrac{5}{4}

\rm\longrightarrow\:x-\dfrac{7}{4}=\dfrac{5}{4}

\rm\longrightarrow\:x=\dfrac{5}{4}+\dfrac{7}{4}

\rm\longrightarrow\:x=\dfrac{5+7}{4}

\rm\longrightarrow\:x=\cancel\dfrac{12}{4}

\rm\longrightarrow\:x=3

Then,

\rm\longrightarrow\:x-\dfrac{7}{4}=\dfrac{-5}{4}

\rm\longrightarrow\:x=\dfrac{-5}{4}+\dfrac{7}{4}

\rm\longrightarrow\:x=\dfrac{-5+7}{4}

\rm\longrightarrow\:x=\dfrac{\cancel{2}}{\cancel{4}}

\rm\longrightarrow\:x=\dfrac{1}{2}

Hence,the roots of the quadratic equation will be 3 and ½.

Similar questions