Math, asked by mukeshkumar3939, 10 months ago

find the roots of the following quadratic equations by factorisation
(1)
x {}^{2} - 3x - 10 = 0

Answers

Answered by kanchansharma1005
0

Listen kid hate math and start loving GOD

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
1

\huge\sf\pink{Answer}

☞ Roots of the given Equation = 5 or -2

\rule{110}1

\huge\sf\blue{Given}

\normalsize\sf\ x^2 - 3x - 10 = 0

\rule{110}1

\huge\sf\gray{To \:Find}

\normalsize\sf\ Roots \: of \: Equation

\rule{110}1

\huge\sf\purple{Steps}

\underline{\bullet\textsf{\:By \: using \: Quadratic \: formula:}}

\normalsize\leadsto\sf\ x = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}

\normalsize \leadsto\sf\ x = \dfrac{-(-3) \pm \sqrt{(3)^2 - 4 \times\ 1 \times\ (-10)}}{2 \times\ 1}

\normalsize \leadsto\sf\ x = \dfrac{3 \pm \sqrt{9 - (-40)}}{2}

\normalsize\leadsto\sf\ x = \dfrac{3 \pm \sqrt{9 + 40}}{2}

\normalsize\leadsto\sf\ x = \dfrac{3 \pm \sqrt{49}}{2}

\normalsize\leadsto\sf\ x = \dfrac{3 \pm 7}{2}

\normalsize\leadsto\sf\ x = \dfrac{ 3 + 7}{2} \: \: or \: \: \dfrac{3 - 7}{2}

\normalsize\leadsto\sf\ x = \dfrac{{10}}{{2}} \: \: or \: \: \dfrac{{-4}}{{2}}

\normalsize\orange{\leadsto\sf\ x = 5 \: \: or \: \: -2}

\underline{\bullet\:\textsf{By \: using \: Middle \: term \: factorization:}}

\normalsize\dashrightarrow\sf\ x^2 - 3x - 10 = 0

\normalsize\dashrightarrow\sf\ x^2 - 5x + 2x - 10 = 0

\normalsize\dashrightarrow\sf\ x(x - 5) + 2(x - 5) = 0

\normalsize\dashrightarrow\sf\ (x - 5)(x + 2) = 0

\normalsize\dashrightarrow\sf\ (x - 5) = 0 \: or \: (x + 2) = 0

\normalsize\dashrightarrow\sf\ x = 0 + 5 \: or \: x = 0 - 2

\normalsize\orange{\dashrightarrow\sf\ x = 5 \: or \: x = -2}

\rule{170}3

Similar questions