Math, asked by BrainlyHelper, 1 year ago

Find the roots of the following quadratic equations (if they exist) by the method of completing the square. √3x²+10x+7√3=0

Answers

Answered by nikitasingh79
1

SOLUTION :  

Given : √3x² + 10x + 7√3 = 0

On dividing the whole equation by √3,

(x² + 10 x/√3 + 7) = 0

Shift the constant term on RHS

x² + 10 x/√3  =  - 7

Add square of the ½ of the coefficient of x on both sides

On adding (½ of 10/√3)² = (10/2√3)² both sides

x² + 10 x/√3 + (10/2√3)² = - 7 + (10/2√3)²

Write the LHS in the form of perfect square

(x + 10/2√3)² = - 7 + 100/12

[a² + 2ab + b² = (a + b)²]

(x + 10/2√3)² = (- 7 × 12 + 100)/12

(x + 10/2√3)² = (- 84 + 100)/12

(x + 10/2√3)² = 16/12

On taking square root on both sides

(x + 10/2√3) = √(16/12)

(x + 10/2√3) = ± 4/√12

(x + 10/2√3) = ± 4/2√3

[√12 = √4 × 3 = 2√3]

On shifting constant term (10/2√3) to RHS

x = ± 4/2√3 - 10/2√3  

x =   4/2√3 - 10/2√3

[Taking +ve sign]

x = (4 - 10)/2√3

x = -6/2√3 = - 3/√3

On rationalising  the denominator  

x = (-3 × √3) / (√3 ×√3)

x = -3√3/3

x = - √3

x = -  4/2√3 - 10/2√3

[Taking - ve sign]

x = (- 4 - 10)/2√3

x = - 14/2√3 = - 7/√3

x = - 7/√3

Hence, the  roots of the given equation are  - √3  & - 7/√3

HOPE THIS ANSWER WILL HELP YOU...


sakshi3371: thanks
Answered by mysticd
1

Solution:

Compare given Quadratic

equation √3x²+10x+7√3=0

with ax²+bx+c=0, we get

a = √3 , b = 10 , c = 7√3,

i ) Discriminant (D)

= b² - 4ac

= 10² - 4×√3×7√3

= 100 - 84

= 16

= 4²

D > 0

Therefore ,

Roots are real and distinct.

ii ) Finding roots by

completing square method:

√3x²+10x+7√3 = 0

Divide each term by √3 ,

we get

x² + (10/√3)x + 7 = 0

=> x² + 2•x•(5/√3)= -7

=> x²+2•x•(5/√3)+(5/√3)²=-7+(5/√3)²

=> (x+5/√3)² = -7 + 25/3

=> ( x + 5/√3 )² = (-21+25)/3

=> ( x + 5/√3 )² = 4/3

=> x + 5/√3 = ± (√4/√3 )

=> x = -5/√3 ± 2/√3

=> x = ( -5 ± 2 )/√3

Therefore ,

x = (-5+2)/√3 or x = (-5-2)/√3

=> x = -3/√3 Or x = -7/√3

=> x = -√3 Or x = -7/√3

••••

Similar questions