Math, asked by kiki66, 5 months ago

Find the roots of the following Quadratic Equations using method of factorization and formula method both.
(ii)  {2x}^{2}  - 5x + 3 = 0

(i) 2x^{2}  - x - 91 = 0

Answers

Answered by jameshunn178
3

Answer:

x=3/2 and x=1

Step-by-step explanation:

"Roots" means solutions

ii) 2x^2-5x+3

find two numbers that multiply to 6 and add to -5

those 2 numbers are: -3 and -2

(2x^2-2x)(-3x+3)=0

Factorize out the the common factor

2x(x-1)-3(x-1)=0

Combine the brackets and the numbers outside of brackets  

2x-3=0         x-1=0

x=3/2            x=1

Answered by Unacademy
4

\sf{\bold{\purple{\star{\underline{\underline{Solution\: 1}}}}}}

⠀⠀⠀⠀

\sf : \implies\:{\bold{ 2x^2 - 5x + 3 = 0 }}

⠀⠀⠀⠀

⠀⠀⠀⠀

\sf : \implies\:{\bold{ 2x^2 - 2x - 3x + 3 = 0 }}

⠀⠀⠀⠀

⠀⠀⠀⠀

\sf : \implies\:{\bold{ 2x ( x + 1 ) - 3 ( x + 1 )= 0 }}

⠀⠀⠀⠀

⠀⠀⠀⠀

\sf : \implies\:{\bold{ (2x - 3 ) ( x + 1 ) = 0 }}

⠀⠀⠀⠀

⠀⠀⠀⠀

\sf : \implies\:{\bold{ 2x - 3= 0 | x + 1 = 0  }}

⠀⠀⠀⠀

⠀⠀⠀⠀

\sf : \implies\:{\bold{ 2x = 3  | x = - 1 }}

⠀⠀⠀⠀

⠀⠀⠀⠀

\sf : \implies\:{\bold{ x =\dfrac{3}{2} | x = - 1  }}

⠀⠀⠀⠀

\sf{\star{\boxed{\orange{\frak{ x = \dfrac{3}{2}  or - 1}}}}}

⠀⠀⠀⠀

\sf{\bold{\purple{\star{\underline{\underline{Solution\: 2}}}}}}

⠀⠀⠀⠀

\sf : \implies\:{\bold{ 2x^2 - x - 91 = 0 }}

⠀⠀⠀⠀

⠀⠀⠀⠀

\sf : \implies\:{\bold{ 2x^2 - 14x + 13x - 91 = 0 }}

⠀⠀⠀⠀

⠀⠀⠀⠀

\sf : \implies\:{\bold{ 2x ( x - 7 ) + 13 ( x  - 7)= 0 }}

⠀⠀⠀⠀

⠀⠀⠀⠀

\sf : \implies\:{\bold{ (2x + 13 ) ( x - 7 ) = 0 }}

⠀⠀⠀⠀

⠀⠀⠀⠀

\sf : \implies\:{\bold{ 2x + 13 = 0 | x - 7 = 0  }}

⠀⠀⠀⠀

⠀⠀⠀⠀

\sf : \implies\:{\bold{ 2x = - 13 | x = 7  }}

⠀⠀⠀⠀

⠀⠀⠀⠀

\sf : \implies\:{\bold{ x =\dfrac{-13}{2} | x = 7  }}

⠀⠀⠀⠀

\sf{\star{\boxed{\orange{\frak{ x = \dfrac{-13}{2}  or 7}}}}}

⠀⠀⠀⠀

Similar questions