Math, asked by nitinwaidande1457, 9 months ago

Find the roots of the following quadratic (if they exist) by the method of completing the square.
2x²-7x+3=0

Answers

Answered by MaheswariS
3

\text{Given equation is}

2x^2-7x+3=0

\text{To make the coefficient of $x^2$, divide by 2}

x^2-\frac{7}{2}x+\frac{3}{2}=0

x^2-\frac{7}{2}x=\frac{-3}{2}

\text{To make the L.H.S as a perfect square,}\;\text{add $\frac{49}{16}$ on both sides}

x^2-\frac{7}{2}x+\frac{49}{16}=\frac{49}{16}-\frac{3}{2}

(x-\frac{7}{4})^2=\frac{49-24}{16}

(x-\frac{7}{4})^2=\frac{25}{16}

\text{Taking square root on bothsides, we get}

x-\frac{7}{4}=\pm\frac{5}{4}

x=\frac{7}{4}\pm\frac{5}{4}

x=\frac{7\pm5}{4}

x=\frac{7+5}{4},\;\frac{7-5}{4}

x=3,\;\frac{1}{2}

\therefore\textbf{The solution set is}\;\{\bf\,3,\;\frac{1}{2}\}

Similar questions