Math, asked by boreedyshambireddy, 5 months ago

Find the roots of the following quadratis
lequations , if they exist.
5x^2-7x-6=0​

Answers

Answered by Anonymous
18

Correct Question

  • Find the roots of the following quadratic equation 5x² - 7x - 6 = 0.

Given Equation

  • 5x² - 7x - 6 = 0

To find

  • Roots of the quadratic equation.

Solution

  • We will solve this question by quadratic formula.
  • To apply the formula, we need to calculate the discriminant (D).

\: \: \: \: \: \: \: \: \: \: \: \: \boxed{\tt{\bigstar{D = b^2 - 4ac{\bigstar}}}}

Here,

  • a = 5
  • b = -7
  • c = -6

\large{\tt{\longmapsto{D = (-7)^2 - 4(5)(-6)}}}

\large{\tt{\longmapsto{D = 49 + 120}}}

\large{\tt{\longmapsto{D = 169}}}

Using Quadratic Formula

\: \: \: \: \: \: \: \: \: \: \: \: \boxed{\tt{\bigstar{x = \dfrac{-b ± \sqrt{D}}{2a}{\bigstar}}}}

Here,

  • b = -7
  • D = 169
  • a = 5

Putting values in the formula

\tt:\implies\: \: \: \: \: \: \: \: {x = \dfrac{-(-7) ± \sqrt{169}}{2(5)}}

\tt:\implies\: \: \: \: \: \: \: \: {x = \dfrac{7 ± 13}{10}}

Root 1

\tt:\implies\: \: \: \: \: \: \: \: {x = \dfrac{7 - 13}{10}}

\tt:\implies\: \: \: \: \: \: \: \: {x = \dfrac{-6}{10}}

\tt:\implies\: \: \: \: \: \: \: \: {x = \dfrac{-3}{5}}

Root 2

\tt:\implies\: \: \: \: \: \: \: \: {x = \dfrac{7 + 13}{10}}

\tt:\implies\: \: \: \: \: \: \: \: {x = \dfrac{20}{10}}

\tt:\implies\: \: \: \: \: \: \: \: {x = 2}

Hence, the roots are :-

\tt\longrightarrow{} \bf{x = \dfrac{-3}{5}\: or\: x = 2}

━━━━━━━━━━━━━━━━━━━━━━

Similar questions