Math, asked by Faheemzia101, 3 months ago

find the roots of the following question
5x^{2}-29x+20

Answers

Answered by manojsharma5676
1

Step-by-step explanation:

{5x}^{2} - 29x + 205x

2

−29x+20

Factorise The Term By Middle Term Splitting.

In Middle Term Splitting Divide Middle Term Such that On Multiplying Both It should be Product of Coffecient x² and constant Term

\begin{gathered} {5x}^{2} - 29x + 20 = 0 \\ \\ {5x}^{2} - 25x - 4x + 20 = 0 \\ \\ 5x(x - 5) - 4(x - 5) = 0 \\ \\ (5x - 4)(x - 5) = 0\end{gathered}

5x

2

−29x+20=0

5x

2

−25x−4x+20=0

5x(x−5)−4(x−5)=0

(5x−4)(x−5)=0

Here One Zero of Polynomial

\begin{gathered}5x - 4 = 0 \\ \\ 5x = 4 \\ \\ x = \frac{4}{5} \end{gathered}

5x−4=0

5x=4

x=

5

4

Other Zero of Polynomial

\begin{gathered}x - 5 = 0 \\ \\ x = 5\end{gathered}

x−5=0

x=5

We got Zeroes

\begin{gathered} \alpha = \frac{4}{5} \\ \\ \beta = 5\end{gathered}

α=

5

4

β=5

Polynomial

ax²+bx+c

{5x}^{2} - 29x + 205x

2

−29x+20

Coffecient of x²=5

Coffecient of x¹=-29

Coffecient of x^0=20

Let a in ax²+bx+c=5

Let B in ax²+bx+c=-29

Let c in ax²+bx+c=20

Sum Of Zeroes

\begin{gathered} \alpha + \beta = - \frac{coffecient \: of \: x}{coffecient \: of \: {x}^{2} } \\ \\ \alpha + \beta = - \frac{b}{a} \\ \\ \frac{4}{5} + 5 = - \frac{-29}{5} \\ \\ \frac{29}{4} = + \frac{29}{4} < /p > < p > \end{gathered}

α+β=−

coffecientofx

2

coffecientofx

α+β=−

a

b

5

4

+5=−

5

−29

4

29

=+

4

29

</p><p>

lhs = rhslhs=rhs

Product of Zeroes

\begin{gathered} \alpha \times \beta = \frac{constant \: term}{cofficient \: of \: {x}^{2} } \\ \\ \frac{4}{5} \times 5 = \frac{20}{5} \\ \\ \frac{20}{5} = \frac{20}{5} \\ \\ lhs = rhs\end{gathered}

α×β=

cofficientofx

2

constantterm

5

4

×5=

5

20

5

20

=

5

20

lhs=rhs

\boxed{\mathbf{\huge{LHS=RHS}}}

LHS=RHS

\underline{\mathbf{\huge{Verified✓}}}

Verified✓

Answered by AnmolJigarChawla
2

Answer:

5 and 4/5

Step-by-step explanation:

5x² - 29x + 20

=》 5x² -25x -4x + 20

=》 5x(x - 5) -4(x - 5)

=》 (5x - 4) (x - 5)

=》 x=4/5 and x = 5

Similar questions