Math, asked by Aldrikhenry, 1 year ago

find the roots of the following square equation by factorization
 \frac{x + 1}{x - 1}  -  \frac{x - 1}{x + 1?}  =  \frac{5}{6}  \:

Answers

Answered by DevilDoll12
9
HEYA!
---------

-----------------------------------------------------------------------------------------------------
✴ROOTS OF A QUADRATIC EQUATION✴
-----------------------------------------------------------------------------------------------------

 \frac{x + 1}{x - 1}  -  \frac{x - 1}{x + 1}  = \frac{5}{6 }  \\  \\  =  \frac{(x + 1) {}^{2}  - (x - 1) {}^{2} }{(x - 1)(x + 1)}  =  \frac{5}{6}  \\  \\  =  \frac{ x{}^{2}  +1 + 2x - (x {}^{2}   + 1 - 2x)}{(x - 1)(x + 1)}  =  \frac{5}{6}  \\  \\  =  \frac{x {}^{2} + 1 + 2x - x {}^{2} - 1 + 2x  }{(x - 1)(x + 1)}  =  \frac{5}{6 }  \\  \\  =  \frac{4x}{x {}^{2}  - 1}  =  \frac{5}{6}  \\  \\  = >  24x = 5x {}^{2}  - 5 \\  \\  =  > 24x - 5x {}^{2}  + 5 = 0 \\  \\  =  > 5x {}^{2}  - 24x - 5 = 0 \\  \\  using \: quadratic \: formula \\  \\ x =   \frac{ - b \frac{ + }{ - } \sqrt{b {}^{2}  - 4ac}  }{2a}  \\  \\ a = 5 \:  \:  \:  \:  \: b =  - 24 \:  \: c =  - 5 \\  \\  \\ discriminant \: d =  \sqrt{ b {}^{2} - 4ac }  \\  \\  =  \sqrt{576 - 4 \times 5  \times  - 5}  =  \sqrt{676}  = 26 \\  \\ x =  \frac{24 + 26}{10}  =  \frac{50}{10}  = 5 \\  \\ x =  \frac{24 - 26}{10}  =  \frac{ - 2}{10}  =  \frac{ - 1}{5}

Hence the roots are -1/5 and 5 . It has real and distinct roots .

-----------------------------------------------------------------------------------------------------

Aldrikhenry: Thank you so much
DevilDoll12: wlcm✔
Aldrikhenry: can i ask you a question
Aldrikhenry: 2x+y=8; x-2y=-1
Aldrikhenry: plzz solve this by Substitution or elimination method
DevilDoll12: post it as. A question
DevilDoll12: I cant solve in the comment section
Aldrikhenry: okk
Similar questions