Math, asked by ladprince1112, 4 months ago

Find the roots of the folowing equation by Factorisation.
x+1/x-1 - x-1/x+1 =5/6​

Answers

Answered by aryan073
2

Given :

•The given equation is

 \\  \red \bigstar \:  \bf \:  \frac{x + 1}{x - 1}  -  \frac{x - 1}{x + 1}  =  \frac{5}{6}  \\

To Find :

•The roots of the given equation =?

Solution :

  \\ \bullet \bf \:  \frac{x + 1}{x - 1}  -  \frac{x - 1}{x + 1}  =  \frac{5}{6}

\\ \red\star\blue{\underline{\sf{Getting \: cross \: multiplication :}}}

  \\ \implies \sf \:  \:  \frac{x + 1}{x - 1}  -  \frac{x - 1}{x + 1}  =  \frac{5}{6}

  \\  \implies \sf \:  \frac{x + 1}{x - 1}  -  \frac{ x - 1}{x + 1}  =  \frac{5}{6}  \\  \\ \\   \\  \implies \sf \:  \frac{(x + 1)(x + 1) - ((x - 1)(x - 1)}{(x - 1)(x + 1)}  =  \frac{5}{6}  \\   \\ \\  \\  \implies \sf \:  \frac{x(x + 1) + 1(x + 1) - ((x(x - 1) - 1(x - 1))}{x(x + 1) - 1(x + 1)}  =  \frac{5}{6}  \\  \\  \\  \\  \implies \sf \:  \:  \frac{ ({x}^{2} + x + x + 1) - ( {x}^{2}  - x - x + 1) }{ {x}^{2} + x - x - 1 }  =  \frac{5}{6}  \\  \\  \\  \\  \implies \sf \:  \frac{ ({x}^{2} + 2x + 1) - ( {x}^{2} - 2x + 1)  }{{x}^{2}  - 1}  =  \frac{5}{6}  \\  \\  \\   \\  \implies \sf \:  \:  \frac{( {x}^{2}  + 2x + 1 -  {x}^{2} + 2x - 1) }{ {x}^{2}  - 1}  =  \frac{5}{6}  \\  \\  \\   \\  \implies \sf \:  \frac{4x}{ {x}^{2}  - 1}  =  \frac{5}{6}  \\  \\  \\  \implies \sf \: 6(4x) = 5( {x}^{2}  - 1) \\  \\  \\  \implies \sf \: 24x = 5 {x}^{2}  - 5 \\  \\  \\  \implies \sf \: 24x - 5 {x}^{2}  + 5 = 0 \\  \\  \\  \implies \sf \:  - 5 {x}^{2}  + 24x + 5 = 0 \\  \\  \\  \implies \sf \: 5 {x}^{2}  - 24x - 5 = 0 \\  \\  \\  \implies \sf \: 5 {x}^{2}  - 25x + x - 5 =0 \\  \\  \\  \implies \sf \:5x(x - 5) + 1(x - 5) = 0 \\  \\  \\  \implies \sf \: (5x + 1) = 0 \:  \:  \: and \:  \:  \: (x  - 5) = 0 \\  \\  \\  \implies \sf \:  \boxed{ \sf{x =  \frac{ - 1}{5} }} \:  \:  \: and \:  \:  \: \boxed{ \sf{x = 5}}

The roots of the given quadratic equation is

 \red \bigstar \boxed { \sf{x =  \frac{ - 1}{5}  \:  \:  \: and \:  \:  \: x = 5}}

\\ \bigstar\large\green{\underline{\sf{Additional \: information :}}}

• For solving any type of quadratic equation we use formula method and determinant method to solve easily.

Formula Method :

\\ \bullet\boxed{\sf{x=\dfrac{-b \pm \sqrt{b^{2}-4ac}}{2a}}}

Determinant Method :

\\ \boxed{\sf{\bullet \: \delta D=b^{2}-4ac}}

Similar questions