Math, asked by ssujabiju, 10 months ago

find the roots of the given quadratic equation by completing the square method
x square - 6 X + 8 = 0

Answers

Answered by Anonymous
27

Given :

  • Quadratic equation : x² - 6x + 8 = 0

To Find :

  • Roots of the given quadratic equation

Solution :

➨ x² - 6x + 8 = 0

➨ x² - 6x = - 8

By adding 3² on both side

➨ x² - 6x + 3² = - 8 + 3²

➨ x² - 6x + 3² = - 8 + 9

Using identity : ( a - b )² = a² - 2ab + b²

➨ ( x - 3 )² = 1

➨ x - 3 = √1

➨ x - 3 = ± 1

➨ when x - 3 = 1 , x = 4

➨ when x - 3 = - 1 , x = 2


MajorLazer017: amazing! :devil-laugh:
Anonymous: Tnx bro :devil-laugh:
Anonymous: wow... what a :devil-laugh:...
Anonymous: (°_°)
MajorLazer017: xD
Anonymous: ^^
Answered by Anonymous
16

\huge{\underline{\underline{\pink{Ans}\red{wer:}}}}

\bold{Roots \ are \ 4 \ and \ 2.}

\huge\orange{\underline{\underline{Given:}}}

\bold{The \ given \ quadratic \ equation \ is }

\bold{=>x^{2}-6x+8=0}

\bold\purple{\underline{\underline{To \ find:}}}

\bold{Roots \ of \ the \ equation.}

\bold\green{\underline{\underline{Solution:-}}}

\bold{The \ given \ quadratic \ equation \ is}

\bold{=>x^{2}-6x+8=0}

\bold{Here,}

\bold{Coefficient \ of \ x^{2}=1}

\bold{Coefficient \ of \ x=-6}

\bold{Constant \ term=8}

\bold{=>x^{2}-6x=-8}

______________________________

\bold{(\frac{1}{2} \ × \ Coefficient \ of \ x)^{2}}

\bold{=>[\frac{1}{2}×(-6)]^{2}}

\bold{=>-3^{2}}

\bold{=9}

\bold{Add \ 9 \ on \ both \ sides \ of \ equation}

\bold{=>x^{2}-6x+9=-8+9}

\bold{=>(x-3)^{2}=1}

\bold{On \ taking \ square \ root \ of \ both \ sides}

\bold{=>x-3=1 \ or \ -1}

\bold{\therefore{x=1+3 \ or \ -1+3}}

\bold{\therefore{x=4 \ or \ 2.}}

\bold\purple{\tt{\therefore{Roots \ are \ 4 \ and \ 2.}}}

Similar questions