Math, asked by rishika1005, 5 months ago

Find the roots of the given quadratic equations
1. √2x square -3x -5√2 = 0​

Answers

Answered by SuitableBoy
113

{\huge{\rm{\underline{\underline{Question:–}}}}}

Q) Find the roots of the given Quadratic Equation

√2x² - 3x - 5√2 = 0

 \\

{\huge{\rm{\underline{\underline{Answer\checkmark}}}}}

 \\

{\large{\underline{\bf{\star\;Given\;:-}}}}

  • Equation : √2x² - 3x - 5√2 = 0

 \\

{\large{\bf{\underline{\star\;To\;Find\;:-}}}}

  • The roots of the Equation .

 \\

{\huge{\bf{\underline{\star\;Solution\;:-}}}}

The standard Quadratic Equation is in the form :

 \boxed{ \sf{a {x}^{2}  + bx + c = 0}}

Compare it with the given Equation ..

 \sf \: a {x}^{2}  + bx + c  \:  \:  \rang \lang \:  \:  \sqrt{2}  {x}^{2}  - 3x - 5 \sqrt{2}

Here ,

  • a = √2
  • b = -3
  • c = -5√2

Now ,

Using the Quadratic Formula to find the roots -

 \boxed{ \sf{roots =  \frac{ - b \pm \:  \sqrt{ {b}^{2} - 4ac } }{2a} }}

 \mapsto \rm \: roots =  \frac{ - ( - 3) \pm \:  \sqrt{ {( - 3)}^{2}  - 4( \sqrt{2})( - 5 \sqrt{2} ) } }{2 \times  \sqrt{2} }  \\

  \mapsto \rm \: roots =  \frac{3 \pm \:  \sqrt{9 + 40} }{2 \sqrt{2} }  \\

 \mapsto \rm \: roots =  \frac{3 \pm \:  \sqrt{49} }{2 \sqrt{2} }  \\

 \mapsto \rm \: roots =  \frac{3 \pm 7}{2 \sqrt{2} }  \\

So ,

First root -

 \rightarrow \rm \: 1st \: root =  \frac{3 + 7}{2 \sqrt{2} }  \\

 \rightarrow \rm \: 1st \: root =  \frac{ \cancel{10}}{ \cancel2 \sqrt{2} }    \\

 \rightarrow \rm \: 1st \: root =  \frac{5}{ \sqrt{2} }  \times  \frac{ \sqrt{2} }{ \sqrt{2} }  \\

 \longrightarrow \underline{ \boxed{ \frak{ \pink{first \: root =  \frac{5 \sqrt{2} }{2}}}}}

Second root -

 \rightarrow \rm \: 2nd \: root =  \frac{3 - 7}{2 \sqrt{2} }  \\

 \rightarrow \rm \: 2nd \: root =  \frac{ -  \cancel4}{ \cancel2  \sqrt{2} }  \\

 \rightarrow \rm \: 2nd \: root =  \frac{ - 2}{ \sqrt{2} }   \times  \frac{ \sqrt{2} }{ \sqrt{2} }  \\

 \rightarrow \rm \: 2nd \: root  = \frac{ -  \cancel2 \sqrt{2} }{ \cancel2}  \\

 \longrightarrow \underline{ \boxed{ \frak{ \pink{second \: root =  -  \sqrt{2} }}}}

So ,

The roots of the Equation are \frak{5√2}{2} and -√2 .

 \\

_________________________

 \\

{\large{\bf{\underline{\star\;Know\;More\;:-}}}}

• A Quadratic Equation has 2 roots / Zeroes .

• The degree of a Quadratic Polynomial is 2 .

• The roots/Zeroes are those values , which when put in place of the variable , makes the whole Polynomial=0 .

• The roots of a Quadratic Equation can be found using Middle Term Splitting or Quadratic Formula .

Answered by ssvinayakenterprises
1

Answer:

well you already got the answer

Similar questions