Math, asked by Raghava4831, 10 months ago

Find the roots of the qe:x2+5x-50=0by the split method,factorization and formula method

Answers

Answered by Anonymous
2

 \huge \mathtt{ \fbox{Solution :)}}

 \sf Given \:  \begin{cases}  \sf (i) \: The \:  quadratic  \: equation \:  is \:   {(x)}^{2}  + 5x - 50 = 0 \\  \\   \sf (ii) \:  Here \:  a = 1 \: , \: b = 5 \sqrt{3}  \: and \: c = -50\end{cases}

1) By prime factorisation method

  \sf \mapsto {(x)}^{2}  + 5x - 50 = 0 \\  \\  \sf \mapsto </p><p> {(x)}^{2} - 5x + 10x - 50 = 0 \\  \\  \sf \mapsto </p><p>x(x - 5) + 10(x - 5) = 0 \\  \\ \sf \mapsto  </p><p>(x + 10) (x - 5) = 0 \\  \\  \sf \mapsto </p><p>x = -10 \:  \:  or \: \:   x = 5

2) By quadratic formula

We know that , the quadratic formula is given by ,

  \mathtt{ \large{\fbox{x =  \frac{ - b± \sqrt{ {(b)}^{2}  - 4ac} }{2a} }}}

Substitute the known values , we get

 \sf \mapsto x =  \frac{ - 5 ±\sqrt{ {(5)}^{2} - 4(1)( - 50) } }{2(1)}  \\  \\ \sf \mapsto  x =   \frac{ - 5± \sqrt{25 + 200} }{2}  \\  \\ \sf \mapsto  x =  \frac{ - 5±15}{2}  \\  \\ \sf \mapsto  x =  \frac{ - 5  -  15}{2} \:  \: or \:  \:  \frac{ - 5  + 15}{2} \\  \\ \sf \mapsto x =  - 10 \:  \: or \:  \: x =  5

Hence , the roots of given quadratic equation are 5 and - 10

______________ Keep Smiling

Similar questions