Math, asked by aayushi3569, 8 months ago

Find the roots of the quadratic equation:


1/3x2-√11x + 1 =0 ​

Answers

Answered by tulikarani387
4

Answer:

1/3x^2-√11x+1=0

or, x^2/3-√11x+1=0

( x^2-3√11x+3) /3=0

or, x^2-3√11x+3=0

By applying quadratic formula ,

x=1, y=-3√11x and c=3.

x=(-b_+√b^2-4ac) /2a

=-(-3√11x_+√-3√11x^2-4*1*3) /2*1

=(3√11_+√99-12) /2

=(3√11_+√87) /2

First root=(3√11+√87) /2

=9.638

And, Second root=(3√11-√87) /2

=0.311

I hope it is helpful to you... plzz mark it as brainliest...

Answered by Anonymous
3

GIVEN

 \bold{ \bull \frac{1}{3} {x}^{2}   -  \sqrt{11}x + 1 = 0 }

FIND

 \bold{ \bull roots \: of \: eq. \: \frac{1}{3} {x}^{2}   -  \sqrt{11}x + 1 = 0 }

FORMULA USED

 \bold{ \bull quadratic \: formula =  \frac{ - b ± \sqrt{ {b}^{2} - 4ac } }{2a}  }

SOLUTION

 \bold{   \to\frac{1}{3} {x}^{2}   -  \sqrt{11}x + 1 = 0 }

we, know that

 \bold{ \longrightarrow  x_{1, 2} =  \frac{ - b ± \sqrt{ {b}^{2} - 4ac }  }{2a} }

where,

  • a = \bold{\frac{1}{3}}
  • b = -11
  • c = 1

put these values in quadratic formula

 \bold{ ➳    x_{1, 2} =  \frac{ -( -  \sqrt{11}) ± \sqrt{ {( -  \sqrt{11}) }^{2} - 4 (\frac{1}{3})(1)  }  }{2( \frac{1}{3}) } }

 \bold{ ➳    x_{1, 2} =  \frac{ \not -( \not -  \sqrt{11}) ± \sqrt{11 - 4 (0.33333)  }  }{0.66666 } }

 \bold{ ➳    x_{1, 2} =  \frac{ \sqrt{11} ± \sqrt{11 - 1.33333  }  }{0.66666 } }

 \bold{ ➳    x_{1, 2} =  \frac{ \sqrt{11} ± \sqrt{9.66666  }  }{0.66666 } }

 \bold{ ➳    x_{1, 2} =  \frac{ \sqrt{11} ± 3.10912 }{0.66666 } }

 \bold{  \to    x_{1} =  \frac{ \sqrt{11}  +  3.10912 }{0.66666 } }

 \bold{  \to    x_{2} =  \frac{ \sqrt{11}   -   3.10912 }{0.66666 } }

 \bold{   \red\to    x_{1} =   \frac{ \sqrt{11} }{0.66666}  +  \frac{3.10912}{0.66666} }

 \bold{   \red\to    x_{2} =   \frac{ \sqrt{11} }{0.66666}   -  \frac{3.10912}{0.66666} }

 \bold{    \blue\to    x_{1} = 4.97493 + 4.66368 }

 \bold{    \blue\to    x_{2} = 4.97493  - 4.66368 }

Hence,

\bold{x_1} = 9.63862

\bold{x_2} = 0.31124

Similar questions