Math, asked by guddimangla1997, 8 months ago

find the roots of the quadratic equation √2x^2+7x+5√2=0 using the quadratic formula.​

Answers

Answered by Anonymous
5

Solution :

By using quadratic formula

\sf \implies x =  \frac{ - b \pm \sqrt{ {b}^{2} - 4ac }  }{2a} \\   \\   \bf here \\  \\  a =  \sqrt{2} \\   \\ b = 7 \\  \\ c = 5 \sqrt{2}

Substitute values in formula

 \sf \implies x =  \frac{ - 7 \pm \sqrt{ {7}^{2} - 4 \times  \sqrt{2} \times 5 \sqrt{2} }  }{2 \times  \sqrt{2} }  \\  \\\sf \implies x =  \frac{ - 7 \pm \sqrt{49- 40}}{2 \sqrt{2} } \\  \\  \sf \implies x =  \frac{ - 7 \pm \sqrt{9}}{2 \sqrt{2}} \\  \\\sf \implies x = \frac{ - 7 \pm9}{2 \sqrt{2}}

 \bf Taking \:  +  ve \: sign \\  \\  x =  \frac{ - 7  + 9}{2 \sqrt{2}} \\  \\\sf \implies  x =  \frac{2}{2 \sqrt{2}} \\  \\\sf \implies x =  \frac{1}{ \sqrt{2} } \\ \\ \implies \sf x=  \frac{ \sqrt{2} }{2}

\bf Taking \:   - ve \: sign \\  \\\sf \implies  x =  \frac{ - 7 -  9}{2 \sqrt{2}} \\  \\\sf \implies  x =  \frac{ - 16}{2 \sqrt{2}} \\  \\ \sf \implies x =  \frac{ - 8}{ \sqrt{2} } \\  \\\sf \implies x =  \frac{  - 8\sqrt{2} }{2}

Similar questions