Math, asked by savitasmullur48, 6 months ago

Find the roots of the quadratic equation
2x² 5x+3=0 by applying
the quadratic
formula​

Answers

Answered by aryan073
5

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Question :

Find the roots of the quadratic equation 2x²-5x+3=0 by applying the formula method :

To find :

Root of given quadratic equation =?

Given equation :

2x²-5x+3

Formula :

 \blue \bigstar \large \boxed { \sf{ \underline{ \: x =  \frac{ - b \pm \:  \sqrt{ {b}^{2} - 4ac } }{2a}  \:  \:  \:  \:  \:  \: ......formula \: method}}}

Solution :

 \diamondsuit \bf \: 2 {x}^{2}  - 5x + 3 = 0 \: ....given \: quadratic \: equation \:

➡ a=2

➡ b=-5

➡ c=3

 \\  \implies  \green{\bold{ \underline { \ by \: using \: determinant \: method}}}

 \implies \large \sf \:  {b}^{2}  - 4ac \:

 \implies  \large\sf  {( - 5)}^{2}   - 4(2)(3)

  \implies \large \sf \: 25 - 24 =  \boxed{1}

 \\  \implies \green{ \bold{ \underline{by \: using \: formula \: method}}}

 \\  \implies \large \sf \: x =  \frac{ - b \pm \:  \sqrt{ {b}^{2} - 4ac } }{2a}

 \\  \implies  \large \sf \: x =  \frac{ - ( - 5) \pm \: 1}{2 \times 2}

 \\  \implies \large \sf \: x =  \frac{5 \pm \: 1}{4}

  \\ \implies \large \sf \: x =  \frac{5 + 1}{4}  \: \:  \:  \:   \: and  \:  \: \: x =  \frac{5 - 1}{4}

  \\ \implies \large \sf \: x =  \frac{6}{4}  \:  \: and \:  \: x =  \frac{4}{4}

 \\  \implies \large \sf \:  \boxed{x =  \frac{3}{2}} \:  \: and \:  \boxed{x = 1 }

 \therefore  \red{\bold{ \underline{roots \: are \: \:  x = \frac{3}{2}  \:  \: and \:  \: x = 1}}}

Answered by Anonymous
2

2x^2 + 5x + 3 = 0

d =  {b}^{2}  - 4ac

a = 2 , b = 5 , c = 3

d = 5^2 - 4 × 2 × 3

d = 25 - 24

d = 1

= - b _+√d/2a

= - 5 _+ √1/2×2

= - 5 +√1/4 = -5 +1/4 = -4/4 = -1 ( i )

= -5 -√1/4 = -5 -1 / 4 = -6/4 = -3/2 ( ii )

Similar questions