Math, asked by mrnikhil52, 8 months ago

Find the roots of the quadratic equation 2x²+x-4=0 by the method equation 2x4+x-4=0 by the method of completing the square?​

Answers

Answered by Anonymous
87

Solution

2 {x}^{2}  +  x - 4 = 0

 \implies 2 {x}^{2}  +  x  = 4

Dividing throughout by '2'

 \implies  \dfrac{2 {x}^{2} }{2}   +   \dfrac{x}{2}   =  \dfrac{4}{2}

 \implies  {x}^{2}   +   \dfrac{x}{2}   =  2

It can be written as

 \implies  (x)^{2}   +  2(x) \bigg( \dfrac{1}{4}  \bigg)  =  2

Adding (1/4)² on both sides

 \implies  (x)^{2}   +  2(x) \bigg( \dfrac{1}{4}  \bigg)   + \bigg( \dfrac{1}{4}  \bigg)^{2}  = 2 + \bigg( \dfrac{1}{4}  \bigg)^{2}

 \implies \bigg( x + \dfrac{1}{4}  \bigg)^{2}  = 2 +  \dfrac{1}{ {4}^{2} }

[ Because a² + b² + 2ab = (a + b)² ]

 \implies \bigg( x + \dfrac{1}{4}  \bigg)^{2}  = 2 +  \dfrac{1}{ 16 }

 \implies \bigg( x + \dfrac{1}{4}  \bigg)^{2}  =  \dfrac{32 + 1}{ 16 }

 \implies \bigg( x + \dfrac{1}{4}  \bigg)^{2}  =  \dfrac{33}{ 16 }

Taking square root on both sides

 \implies  \sqrt{ \bigg( x + \dfrac{1}{4}  \bigg)^{2}}  =   \pm  \sqrt{\dfrac{33}{ 16 } }

 \implies   x + \dfrac{1}{4}   =   \pm  \dfrac{ \sqrt{33} }{  \sqrt{16} }

 \implies   x + \dfrac{1}{4}   =   \pm  \dfrac{ \sqrt{33} }{ 4 }

 \implies   x + \dfrac{1}{4}   =    \dfrac{ \sqrt{33} }{ 4 }  \quad or \quad x +  \dfrac{1}{4}  = -   \dfrac{ \sqrt{33} }{4}

 \implies   x =    \dfrac{ \sqrt{33} }{ 4 } -  \dfrac{1}{4}   \quad or \quad x   = -   \dfrac{ \sqrt{33} }{4}  -  \dfrac{1}{4}

 \implies   x =    \dfrac{ \sqrt{33} - 1 }{ 4 }  \quad or \quad x   = -   \dfrac{ \sqrt{33} + 1 }{4}

Hence, (√33 - 1)/4 and - (√33 + 1)/4 are the roots of the equation.

Answered by Anonymous
75

Answer:

\large\bold\red{Roots =  \frac{ - 1 + \sqrt{33} }{4} , \frac{ - 1 -\sqrt{33} }{4} }

Step-by-step explanation:

Given,

A quadratic equation ,

2 {x}^{2}  + x - 4 = 0

But,

we know that,

The standard form of a quadratic equations is,

 \large \boxed{a {x}^{2}  + bx + c = 0}

Comparing the Coefficients,

We get,

a = 2 \\ b = 1 \\ c =  - 1

Now,

We have to find it's roots by completing the square method,

For that,

Divide the whole Equation by 2,

Therefore,

We get,

 =  >  \frac{2 {x}^{2} + x - 4 }{2}  =  \frac{0}{2}  \\  \\  =  >  {x}^{2}  +  \frac{x}{2}  - 2 = 0

Further simplifying,

We can write,

 =  > ( {(x)}^{2}  + 2 \times x \times  \frac{1}{4}  +  {( \frac{1}{4} )}^{2})  - 2 -  {( \frac{1}{4}) }^{2}  = 0

But,

We know that,

   \large\boxed{{a}^{2}  + 2ab +  {b}^{2}  =  {(a + b)}^{2}}

Therefore,

We get,

 =  >  {(x +  \frac{1}{4} )}^{2}  - 2 -  \frac{1}{16}  = 0 \\  \\  =  >  {(x +  \frac{1}{4} )}^{2}  - ( \frac{32  +  1}{16} ) = 0 \\  \\  =  >  {(x +  \frac{1}{4} )}^{2}  -  \frac{33}{16}  = 0 \\  \\  =  >  {(x +  \frac{1}{4} )}^{2}  =  \frac{33}{16}  \\  \\  =  >  {(x +  \frac{1}{4}) }^{2}  =  {( \pm \frac{ \sqrt{33} }{4} )}^{2}

Again,

Simplifying the terms,

We get,

  =  > x +  \frac{1}{4}  =  \pm \frac{ \sqrt{33} }{4}  \\  \\  =  > x =  -  \frac{1}{4}  \pm \frac{ \sqrt{33} }{4}  \\  \\  =  > x =  \frac{ - 1 \pm \sqrt{33} }{4}

Hence,

The required roots of the Equation are,

 \large\bold{x =  \frac{ - 1  +  \sqrt{33} }{4}}  \: and \: \large\bold{ x =  \frac{ - 1  -  \sqrt{33} }{4} }

Similar questions