Math, asked by ravikarthiknagam, 9 months ago

Find the roots of the quadratic equation 2x²+x-4=0 by the method of completing the square method

Answers

Answered by Anonymous
19

\large{\underline{\bf{\blue{Given:-}}}}

  • ✦ 2x² + x -4 = 0

\large{\underline{\bf{\blue{To\:Find:-}}}}

✦ we need to find the roots of the equation by completing the square method.

\huge{\underline{\bf{\green{Solution:-}}}}

2x² + x -4 = 0

Divide both side by 2.

⠀⠀ \mapsto \rm x {}^{2} +  \frac{x}{2}  -2 = 0 \\  \\  \rm \: add \: \: (  \frac{1}{4} ) {}^{2} \: on \: both \: sides \\  \\  \rm \:  \mapsto \:  {x}^{2} +  \frac{x}{2}    +  \frac{1}{16}  = 2 +  \frac{1}{16} \\  \\  \rm \:  \mapsto \:( x  +  \frac{1}{4} ) {}^{2}  =  \frac{32 + 1}{16} \\  \\ \rm \:  \mapsto(x +  \frac{1}{4}) {}^{2} =  \frac{33}{16}     \\  \\\rm \:  \mapsto \: x + \frac{1}{4}  =  \sqrt{ \frac{33}{16} }  \\  \\ \rm \:  \mapsto \: x =  \frac{ \pm \sqrt{  33}}{4}  -  \frac{1}{4}   \\  \\\bf \:  \mapsto  \pink{x =  \frac{ \sqrt{33}  - 1}{4} } \:  \: or \:  \:  \pink{x =  \frac{ - ( \sqrt{33}  + 1 )}{4} }\\\\

⠀⠀⠀

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by kumaaragurumaha
4

Answer: divide the whole equation by 2

(2x^2 +x-4) /2 =0

x^2 +x/2 -2 =0     .....     (i)

we know  (a+b)^2 =a^2+2ab +b^2

here a=x and 2ab=x/2

          !

=>    2xb=x/2

2b=1/2

b=1/2 x 1/2 =1/4

in (i) adding and subtracting (1/4)^2

x^2 +x/2 -2 +(1/4)^2-(1/4)^2=0

x^2 + x/2 + (1/4)^2 - 2 - (1/4)^2= 0

(x+1/4)^2 - 2 - (1/4)^2 = 0

(x+1/4)^2 -2 -1/16 = 0

(x +1/4)^2 = 2 + 1/16

(x +1/4)^2 =(2(16) +1 )/16

(x+1/4)^2 = (32+1)/16

=> 33/16

=>x+1/4 = + root 33 / 4  

x = root 33/4-1/4

x=(root 33 -1)/4

and x +1/4 = - root 33/4

x= -rt33/4 -1/4

x= -rt33- 1/4

x = -(rt33 +1)/4

hi friend ...i have done the sum with all the steps needed.......for better understanding....if you understand the sum without all those steps...you can cut short it .have a nice day....

Similar questions