Math, asked by vinayakram, 1 year ago

Find the roots of the quadratic equation √3x²-2√2x-2√3=0​

Answers

Answered by pragatic2004
4

Answer:See the answer below

Hope this will help you

Step-by-step explanation:

Attachments:
Answered by LovelyG
9

Answer:

\large{\underline{\boxed{\sf x = \dfrac{3\sqrt{2}}{\sqrt{3}} \: \: or \: \: \dfrac{-\sqrt{2}}{\sqrt {3}}}}}

Step-by-step explanation:

Given that;

√3x² - 2√2x - 2√3 = 0, on comparing the given equation with ax² + bx + c = 0,

  • a = √3
  • b = -2√2
  • c = -2√3

Discriminant = b² - 4ac

⇒ D = (-2√2)² - 4 * √3 * (-2√3)

⇒ D = 8 + 24

⇒ D = 32

 \tt x =  \frac{ - b \pm  \sqrt{D} }{2a}  \\  \\ \tt x =  \frac{ - ( - 2 \sqrt{2}) \pm  \sqrt{32} }{2 \times  \sqrt{3} }  \\  \\ \tt x =  \frac{2 \sqrt{2} \pm 4 \sqrt{2} }{2 \sqrt{3} }

Therefore,

\tt x =  \frac{2 \sqrt{2}  + 4 \sqrt{2} }{2 \sqrt{3} }  \\  \\ \tt x =  \frac{6 \sqrt{2} }{2 \sqrt{3} }  \\  \\ \implies \bf x =  \frac{3 \sqrt{2} }{ \sqrt{3} }

Or,

\tt x =  \frac{2 \sqrt{2}  - 4 \sqrt{2} }{2 \sqrt{3} }  \\  \\ \tt x =  \frac{ - 2 \sqrt{2} }{2 \sqrt{3} }  \\  \\ \implies \bf x =  \frac{ -  \sqrt{2} }{ \sqrt{3} }

Similar questions